905 resultados para Electric insulators and insulation
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020, which will be met using both biofuels and electric vehicles. In the case of biofuels, for the purposes of meeting the target, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis, or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas savings. This paper examines different electric-vehicle scenarios in terms of greenhouse gas savings, using a well-to-wheel life cycle analysis.
Resumo:
The deployment of biofuels is significantly affected by policy in energy and agriculture. In the energy arena, concerns regarding the sustainability of biofuel systems and their impact on food prices led to a set of sustainability criteria in EU Directive 2009/28/EC on Renewable Energy. In addition, the 10% biofuels target by 2020 was replaced with a 10% renewable energy in transport target. This allows the share of renewable electricity used by electric vehicles to contribute to the mix in achieving the 2020 target. Furthermore, only biofuel systems that effect a 60% reduction in greenhouse gas emissions by 2020 compared with the fuel they replace are allowed to contribute to meeting the target. In the agricultural arena, cross-compliance (which is part of EU Common Agricultural Policy) dictates the allowable ratio of grassland to total agricultural land, and has a significant impact on which biofuels may be supported. This paper outlines the impact of these policy areas and their implications for the production and use of biofuels in terms of the 2020 target for 10% renewable transport energy, focusing on Ireland. The policies effectively impose constraints on many conventional energy crop biofuels and reinforce the merits of using biomethane, a gaseous biofuel. The analysis shows that Ireland can potentially satisfy 15% of renewable energy in transport by 2020 (allowing for double credit for biofuels from residues and ligno-cellulosic materials, as per Directive 2009/28/EC) through the use of indigenous biofuels: grass biomethane, waste and residue derived biofuels, electric vehicles and rapeseed biodiesel. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.
METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.
CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020 to be met using biofuels and electric vehicles. In the case of biofuels, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas saving. In this paper the initial findings of a well-to-wheel analysis of electric vehicle deployment in Northern Ireland are presented. The key finding indicates that electric vehicles require least amount of energy per mile on a well-to-wheel basis, consume the fewest resources, even accommodating inefficient fuel production, in comparison to standard internal combustion engine and hybrid vehicles.
Resumo:
Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
Resumo:
The creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density MS in a solenoid. In addition to large MS, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard disk drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on MS for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large MS, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.
Resumo:
The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.
Resumo:
There is a significant lack of indoor air quality research in low energy homes. This study compared the indoor air quality of eight
newly built case study homes constructed to similar levels of air-tightness and insulation; with two different ventilation strategies (four homes with Mechanical Ventilation with Heat Recovery (MVHR) systems/Code level 4 and four homes naturally ventilated/Code level 3). Indoor air quality measurements were conducted over a 24 h period in the living room and main bedroom of each home during the summer and winter seasons. Simultaneous outside measurements and an occupant diary were also employed during the measurement period. Occupant interviews were conducted to gain information on perceived indoor air quality, occupant behaviour and building related illnesses. Knowledge of the MVHR system including ventilation related behaviour was also studied. Results suggest indoor air quality problems in both the mechanically ventilated and naturally ventilated homes, with significant issues identified regarding occupant use in the social homes
Resumo:
Tese de doutoramento, Sistemas Sustentáveis de Energia, Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Master Thesis in Mechanical Engineering field of Maintenance and Production
Resumo:
Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.
Resumo:
In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.
Resumo:
This paper presents the design and analysis of a 400-step hybrid stepper motor for spacecraft applications. The design of the hybrid stepper motor for achieving a specific performance requires the choice of appropriate tooth geometry. In this paper, a detailed account of the results of two-dimensional finite-element (FE) analysis conducted with different tooth shapes such as square and trapezoidal, is presented. The use of % more corresponding increase in detent torque and distorted static torque profile. For the requirements of maximum torque density, less-detent torque, and better positional accuracy and smooth static torque profile, different pitch slotting with equal tooth width has to be provided. From the various FE models subjected to analysis trapezoidal teeth configuration with unequal tooth pitch on the stator and rotor is found to be the best configuration and is selected for fabrication. The designed motor is fabricated and the experimental results is compared with the FE results
Resumo:
We present a highly accurate tool for the simulation of shear Alfven waves (SAW) in collisionless plasma. SAW are important in space plasma environments because for small perpendicular scale lengths they can support an electric field parallel to the ambient magnetic field. Electrons can be accelerated by the parallel electric field and these waves have been implicated as the source of vibrant auroral displays. However, the parallel electric field carried by SAW is small in comparison to the perpendicular electric field of the wave, making it difficult to measure directly in the laboratory, or by satellites in the near-Earth plasma environment. In this paper, we present a simulation code that provides a means to study in detail the SAW-particle interaction in both space and laboratory plasma. Using idealised, small-amplitude propagating waves with a single perpendicular wavenumber, the simulation code accurately reproduces the damping rates and parallel electric field amplitudes predicted by linear theory for varying temperatures and perpendicular scale lengths. We present a rigorous kinetic derivation of the parallel electric field strength for small-amplitude SAW and show that commonly-used inertial and kinetic approximations are valid except for where the ratio of thermal to Alfv\'{e}n speed is between 0.7 and 1.0. We also present nonlinear simulations of large-amplitude waves and show that in cases of strong damping, the damping rates and parallel electric field strength deviate from linear predictions when wave energies are greater than only a few percent of the plasma kinetic energy, a situation which is often observed in the magnetosphere. The drift-kinetic code provides reliable, testable predictions of the parallel electric field strength which can be investigated directly in the laboratory, and will help to bridge the gap between studies of SAW in man-made and naturally occuring plasma.