380 resultados para Elastomeric bearings
Resumo:
Space in musical semiosis is a study of musical meaning, spatiality and composition. Earlier studies on musical composition have not adequately treated the problems of musical signification. Here, composition is considered an epitomic process of musical signification. Hence the core problems of composition theory are core problems of musical semiotics. The study employs a framework of naturalist pragmatism, based on C. S. Peirce’s philosophy. It operates on concepts such as subject, experience, mind and inquiry, and incorporates relevant ideas of Aristotle, Peirce and John Dewey into a synthetic view of esthetic, practic, and semiotic for the benefit of grasping musical signification process as a case of semiosis in general. Based on expert accounts, music is depicted as real, communicative, representational, useful, embodied and non-arbitrary. These describe how music and the musical composition process are mental processes. Peirce’s theories are combined with current morphological theories of cognition into a view of mind, in which space is central. This requires an analysis of space, and the acceptance of a relativist understanding of spatiality. This approach to signification suggests that mental processes are spatially embodied, by virtue of hard facts of the world, literal representations of objects, as well as primary and complex metaphors each sharing identities of spatial structures. Consequently, music and the musical composition process are spatially embodied. Composing music appears as a process of constructing metaphors—as a praxis of shaping and reshaping features of sound, representable from simple quality dimensions to complex domains. In principle, any conceptual space, metaphorical or literal, may set off and steer elaboration, depending on the practical bearings on the habits of feeling, thinking and action, induced in musical communication. In this sense, it is evident that music helps us to reorganize our habits of feeling, thinking, and action. These habits, in turn, constitute our existence. The combination of Peirce and morphological approaches to cognition serves well for understanding musical and general signification. It appears both possible and worthwhile to address a variety of issues central to musicological inquiry in the framework of naturalist pragmatism. The study may also contribute to the development of Peircean semiotics.
Resumo:
Friction characteristics of journal bearings made from cast graphic aluminum particulate composite alloy were determined under mixed lubrication and compared with those of the base alloy (without graphite) and leaded phosphor bronze. All three materials ran without seizure while the performance of the particulate composite and leaded phosphor bronze improved with running. Temperature rise in the journal bearing under mixed/boundary lubrication was also measured. It was found that with 0.3D/1000 to 1.5D/1000 clearance and a low lubrication rate (typical value for a bearing of diameter 35 mm × length 35 mm is 80 mm3/min) and at a PV value of 73 × 106 Nm m−2 min−1 graphitic aluminium alloy journal bearings operate satisfactorily without seizure and excessive temperature rise. In comparison, the bronze bearings, with all the other parameters remaining the same, could not run without excessive temperature rise at clearances below D/1000 at lubrication rates lower than 200 mm3/min
Resumo:
The optimum conditions for producing cast aluminium alloy-mica particle composites, by stirring mica particles (40 to 120 mgrm) in molten aluminium alloys (above their liquidus temperatures), followed by casting in permanent moulds, are described. Addition of magnesium either as pieces along with mica particles on the surface of the melts or as a previously added alloying element was found to be necessary to disperse appreciable quantities (1.5 to 2 wt.%) of mica particles in the melts and retain them as uniform dispersions in castings under the conditions of present investigation. These castings can be remelted and degassed with nitrogen at least once with the retention of about 80% mica particles in the castings. Electron probe micro-analysis of these cast composites showed that magnesium added to the surface of the melt along with mica has a tendency to segregate around the mica particles, apparently improving the dispersability for mica particles in liquid aluminium alloys. The mechanical properties of the aluminium alloy-mica particle composite decrease with an increase in mica content, however, even at 2.2% the composite has a tensile strength of 14.22 kg mm–2 with 1.1% elongation, a compression strength of 42.61 kg mm–2, and an impact strength of 0.30 kgm cm–2. The properties are adequate for certain bearing applications, and the aluminium-mica composite bearings were found to run under boundary lubrication, semi-dry and dry friction conditions whereas the matrix alloy (without mica) bearings seized or showed stick slip under the same conditions.
Resumo:
Successful healing of long bone fractures is dependent on the mechanical environment created within the fracture, which in turn is dependent on the fixation strategy. Recent literature reports have suggested that locked plating devices are too stiff to reliably promote healing. However, in vitro testing of these devices has been inconsistent in both method of constraint and reported outcomes, making comparisons between studies and the assessment of construct stiffness problematic. Each of the methods previously used in the literature were assessed for their effect on the bending of the sample and concordant stiffness. The choice of outcome measures used in in vitro fracture studies was also assessed. Mechanical testing was conducted on seven hole locked plated constructs in each method for comparison. Based on the assessment of each method the use of spherical bearings, ball joints or similar is suggested at both ends of the sample. The use of near and far cortex movement was found to be more comprehensive and more accurate than traditional centrally calculated inter fragmentary movement values; stiffness was found to be highly susceptible to the accuracy of deformation measurements and constraint method, and should only be used as a within study comparison method. The reported stiffness values of locked plate constructs from in vitro mechanical testing is highly susceptible to testing constraints and output measures, with many standard techniques overestimating the stiffness of the construct. This raises the need for further investigation into the actual mechanical behaviour within the fracture gap of these devices.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
Under lubricated conditions, Al-graphite particle composite is a good antiseizure bearing and antifriction material possessing properties which inhibit excessive temperature rise in bearings. The present study characterizes the dry wear properties of the composite. The dry wear characteristics of the Al-(2.7%–5.7% graphite particle) (50–200μm) composite were found to deteriorate with the addition of graphite, load and sliding distance. Both micro structural and microhardness studies of the worn subsurfaces and analysis of wear debris show that the reductions in strength and ductility of the composite due to graphite addition are the most likely causes of deterioration in the wear properties of the composite.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e. g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities. (C) 2011 American Institute of Physics. doi: 10.1063/1.3554748]
Resumo:
In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.
Resumo:
This commentary discusses and summarizes the key highlights of our recently reported work entitled ``Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers.'' The prospect of controlling the mechanical-rigidity and the surface conductance properties offers a unique combination for tailoring the growth and differentiation of neuronal cells. We emphasize the utility of transparent elastomeric substrates with coatings of electrically conducting polymer to realize the desired substrate-characteristics for cellular development processes. Our study showed that neuronal differentiation from ES cells is highly influenced by the specific substrates on which they are growing. Thus, our results provide a better strategy for regulated neuronal differentiation by using such functional conducting surfaces.
Resumo:
Despite advances in regenerative medicine, the cost of such therapies is beyond the reach of many patients globally in part due to the use of expensive biomedical polymers. Large volumes of poly(ethylene terephthalate) (PET) in municipal waste is a potential source of low cost polymers. A novel polyester was prepared by a catalyst-free, melt polycondensation reaction of bis(hydroxyethylene) terephthalate derived from PET post-consumer waste with other multi-functional monomers from renewable sources such as citric acid, sebacic acid and D-mannitol. The mechanical properties and degradation rate of the polyester can be tuned by varying the composition and the post-polymerization time. The polyester was found to be elastomeric, showed excellent cytocompatibility in vitro and elicited minimal immune response in vivo. Three-dimensional porous scaffolds facilitated osteogenic differentiation and mineralization. This class of polyester derived from low cost, recycled waste and renewable sources is a promising candidate for use in regenerative medicine.
Resumo:
A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a ``drag-reduction'' effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.
Resumo:
A family of soybean oil (SO) based biodegradable cross-linked copolyesters sourced from renewable resources was developed for use as resorbable biomaterials. The polyesters were prepared by a melt condensation of epoxidized soybean oil polyol and sebacic acid with citric acid (CA) as a cross-linker. D-Mannitol (M) was added as an additional reactant to improve mechanical properties. Differential scanning calorimetry revealed that the polyester synthesized using only CA as the cross-linker was semicrystalline and elastomeric at physiological temperature. The polymers were hydrophobic in nature. The water wettability, elongation at break and the degradation rate of the polyesters decreased with increase in M content or curing time. Modeling of release kinetics of dyes showed a diffusion controlled mechanism underlies the observed sustained release from these polymers. The polyesters supported attachment and proliferation of human stem cells and were thus cytocompatible. Porous scaffolds induced osteogenic differentiation of the stern cells suggesting that these polymers are well suited for bone tissue engineering. Thus, this family of polyesters offers a low cost and green alternative as biocompatible, bioresobable polymers for potential use as resorbable biomaterials for tissue engineering and controlled release.
Resumo:
Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.
Resumo:
Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.