861 resultados para Ecosystem management -- Queensland -- Johnstone (Shire) -- Data processing.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QUT Library and the High Performance Computing and Research Support (HPC) Team have been collaborating on developing and delivering a range of research support services, including those designed to assist researchers to manage their data. QUT’s Management of Research Data policy has been available since 2010 and is complemented by the Data Management Guidelines and Checklist. QUT has partnered with the Australian Research Data Service (ANDS) on a number of projects including Seeding the Commons, Metadata Hub (with Griffith University) and the Data Capture program. The HPC Team has also been developing the QUT Research Data Repository based on the Architecta Mediaflux system and have run several pilots with faculties. Library and HPC staff have been trained in the principles of research data management and are providing a range of research data management seminars and workshops for researchers and HDR students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research explores the nature of relationship management on construction projects in Australia and examines the effects of culture, by means of Schwarz’s value survey, on relationships under different contract strategies. The research was based on the view that the development of a sustainable supply chain depends on the transfer of knowledge and capabilities from the larger players in the supply chain through collaboration brought about by relationship management. The research adopted a triangulated approach in which quantitative data were collected by questionnaire, interviews were conducted to explore and enrich the quantitative data and case studies were undertaken in order to illustrate and validate the findings. The aim was to investigate how values and attitudes enhance or reduce the incorporation of the supply chain into the project. From the research it was found that the degree of match and mismatch between values and contract strategy impacts commitment and the engagement and empowerment of the supply chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measures by which major developments are officially approved for construction are - by common agreement - complex, time-consuming, and of questionable merit in terms of maintaining ecological viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QUT Library Research Support has simplified and streamlined the process of research data management planning, storage, discovery and reuse through collaboration and the use of integrated and tailored online tools, and a simplification of the metadata schema. This poster presents the integrated data management services a QUT, including QUT’s Data Management Planning Tool, Research Data Finder, Spatial Data Finder and Software Finder, and information on the simplified Registry Interchange Format – Collections and Services (RIF-CS) Schema. The QUT Data Management Planning (DMP) Tool was built using the Digital Curation Centre’s DMP Online Tool and modified to QUT’s needs and policies. The tool allows researchers and Higher Degree Research students to plan how to handle research data throughout the active phase of their research. The plan is promoted as a ‘live’ document’ and researchers are encouraged to update it as required. The information entered into the plan can be made private or shared with supervisors, project members and external examiners. A plan is mandatory when requesting storage space on the QUT Research Data Storage Service. QUT’s Research Data Finder is integrated with QUT’s Academic Profiles and the Data Management Planning Tool to create a seamless data management process. This process aims to encourage the creation of high quality rich records which facilitate discovery and reuse of quality data. The Registry Interchange Format – Collections and Services (RIF-CS) Schema that is used in the QUT Research Data Finder was simplified to “RIF-CS lite” to reflect mandatory and optional metadata requirements. RIF-CS lite removed schema fields that were underused or extra to the needs of the users and system. This has reduced the amount of metadata fields required from users and made integration of systems a far more simple process where field content is easily shared across services making the process of collecting metadata as transparent as possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic valuation of ecosystem services is widely advocated as a useful decision-support tool for ecosystem management. However, the extent to which economic valuation of ecosystem services is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of ecosystem services economic valuation in support of coastal and marine management are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across decision-makers groups. However, most decision-makers never or rarely use it. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent’s use of economic valuation. Such findings concur with conclusions from other existing works, and are instructive to reflect on the issue of the usefulness of ESV in environmental management decision-making. They also confirm that the survey-based approach developed in this application represents a sound strategy to examine this issue at various scales and management levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and development of a Bottom Pressure Recorder for a Tsunami Early Warning System is described here. The special requirements that it should satisfy for the specific application of deployment at ocean bed and pressure monitoring of the water column above are dealt with. A high-resolution data digitization and low circuit power consumption are typical ones. The implementation details of the data sensing and acquisition part to meet these are also brought out. The data processing part typically encompasses a Tsunami detection algorithm that should detect an event of significance in the background of a variety of periodic and aperiodic noise signals. Such an algorithm and its simulation are presented. Further, the results of sea trials carried out on the system off the Chennai coast are presented. The high quality and fidelity of the data prove that the system design is robust despite its low cost and with suitable augmentations, is ready for a full-fledged deployment at ocean bed. (C) 2013 Elsevier Ltd. All rights reserved.