947 resultados para Early onset
Resumo:
BACKGROUND: Increasing incidence of head and neck cancer (HNC) in young adults has been reported. We aimed to compare the role of major risk factors and family history of cancer in HNC in young adults and older patients. METHODS: We pooled data from 25 case-control studies and conducted separate analyses for adults ≤45 years old ('young adults', 2010 cases and 4042 controls) and >45 years old ('older adults', 17 700 cases and 22 704 controls). Using logistic regression with studies treated as random effects, we estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: The young group of cases had a higher proportion of oral tongue cancer (16.0% in women; 11.0% in men) and unspecified oral cavity / oropharynx cancer (16.2%; 11.1%) and a lower proportion of larynx cancer (12.1%; 16.6%) than older adult cases. The proportions of never smokers or never drinkers among female cases were higher than among male cases in both age groups. Positive associations with HNC and duration or pack-years of smoking and drinking were similar across age groups. However, the attributable fractions (AFs) for smoking and drinking were lower in young when compared with older adults (AFs for smoking in young women, older women, young men and older men, respectively, = 19.9% (95% CI = 9.8%, 27.9%), 48.9% (46.6%, 50.8%), 46.2% (38.5%, 52.5%), 64.3% (62.2%, 66.4%); AFs for drinking = 5.3% (-11.2%, 18.0%), 20.0% (14.5%, 25.0%), 21.5% (5.0%, 34.9%) and 50.4% (46.1%, 54.3%). A family history of early-onset cancer was associated with HNC risk in the young [OR = 2.27 (95% CI = 1.26, 4.10)], but not in the older adults [OR = 1.10 (0.91, 1.31)]. The attributable fraction for family history of early-onset cancer was 23.2% (8.60% to 31.4%) in young compared with 2.20% (-2.41%, 5.80%) in older adults. CONCLUSIONS: Differences in HNC aetiology according to age group may exist. The lower AF of cigarette smoking and alcohol drinking in young adults may be due to the reduced length of exposure due to the lower age. Other characteristics, such as those that are inherited, may play a more important role in HNC in young adults compared with older adults.
Resumo:
Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
Resumo:
Les résultats préliminaires de trois essais cliniques de thérapie génique d'une forme agressive de rétinite pigmentaire (l'amaurose congénitale de Leber) ont prouvé que le traitement des maladies dégénératives de la rétine par transfert de gène peut être sûr et efficace pour rétablir une fonction visuelle. Il faudra encore attendre les résultats à long terme de ces études pour que soit définitivement validée cette approche thérapeutique. Dans l'intervalle, il importe de se préparer à son introduction en ophtalmologie de façon à la rendre accessible à nos malades. Pratiquement cela revient à promouvoir: 1) le recrutement; 2) la caractérisation du phénotype et du génotype des sujets atteints et 3) la constitution d'un registre des rétinopathies héréditaires. Recently, preliminary results of three clinical gene therapy trials for early onset retinitis pigmentosa--Leber congenital amaurosis--suggested that treating this degenerative retinal disease by gene transfection can be safe and efficient to restore a visual function. The definitive validation of this therapeutic approach depends on the long-term results. The forthcoming availability of gene therapy in ophthalmology prompts the implementation: of 1) recruitment, 2) phenotyping and genotyping of affected patients, 3) and creation of a hereditary retinopathy registry.
Resumo:
A first episode of depression after 65 years of age has long been associated with both severe macrovascular and small microvascular pathology. Among the three more frequent forms of depression in old age, post-stroke depression has been associated with an abrupt damage of cortical circuits involved in monoamine production and mood regulation. Late-onset depression (LOD) in the absence of stroke has been related to lacunes and white matter lesions that invade both the neocortex and subcortical nuclei. Recurrent late-life depression is thought to induce neuronal loss in the hippocampal formation and white matter lesions that affect limbic pathways. Despite an impressive number of magnetic resonance imaging (MRI) studies in this field, the presence of a causal relationship between structural changes in the human brain and LOD is still controversial. The present article provides a critical overview of the contribution of neuropathology in post-stroke, late-onset, and late-life recurrent depression. Recent autopsy findings challenge the role of stroke location in the occurrence of post-stroke depression by pointing to the deleterious effect of subcortical lacunes. Despite the lines of evidences supporting the association between MRI-assessed white matter changes and mood dysregulation, lacunes, periventricular and deep white matter demyelination are all unrelated to the occurrence of LOD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of aging-related neurodegenerative changes in the human brain. However, they also provide data in favor of the neurotoxic theory of depression by showing that neuronal loss occurs in the hippocampus of chronically depressed patients. These three paradigms are discussed in the light of the complex relationships between psychosocial determinants and biological vulnerability in affective disorders.
Resumo:
Purpose:to describe the clinical features in a five generations family segregating autosomal dominant retinitis pigmentosa and to identify the causative gene Patient and Methods:Twenty five individuals of a large five-generation family originating from Western Switzerland were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldman perimetry and digital fundus photography. Some patients had autofluorescence (AF) imaging, ocular coherence tomography (OCT) and ISCEV-standard full-field electroretinography (ERG). Blood samples were collected from 10 affected (4 to 70 years of age) and 15 unaffected members after informed consent. DNA was isolated and exons and intron-exons junctions of known adRP genes were sequenced using a Big Dye sequencing kit 1.1. Results:Age of onset of nightblindness and severity of progression of the disease was variable between members of the family. Some patients had early onset of nightblindess aged 3, others at mid-twenties. Most patients had visual acuity above 0.6 for the first 4 decades. Two older patients still had good vision (0.4) in their seventies. Myopia (range: -2 to -5) was noticed in most affected subjects. Fundus findings showed areas of atrophy along the arcades. The AF imaging showed a large high density ring bilaterally. A T494M change was found in exon 11 of PRPF3 gene. The change segregates with the disease in the family. Conclusion: A mutation in the PRPF3 gene is rare compared with other genes causing ADRP. Although a T494M change has been reported, our family is the first one with a variable expressivity. Mutations in PRPF3 gene can cause a variable phenotype of ADRP unlike the previously described Danish and English families. Our report gives a better understanding as to the phenotype/genotype description of ADRP due to PRPF3 mutation.
Resumo:
Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.
Resumo:
Purpose: To phenotype a large 3 generation Swiss family with pattern dystrophy and to report a successful result of treatment with ranibizumab of a subfoveal choroidal neovascularisation (CNV) associated with pattern dystrophy in 1 patient Patients and methods: 4 affected and 3 unaffected patients (3 female 4 male, age range: 19 - 80 years) were assessed with a complete ophthalmologic examination. AF images were taken using Heidelberg Retina Angiograph and the digital color photos, fluorescein angiogragraphy (FFA) using the same TOPCON 501 camera. Electroretinogram (full-field and multifocal) was performed in 1 affected patient. One 48 years old patient developed a subfoveal CNV, which was treated with 2 injections of ranibizumab, at 3 months interval. Blood sample was taken for molecular analysis (screening of the gene RDS). Results: Two patients had a typical fundoscopic appearance of pattern dystrophy with butterfly shaped deposit at the fovea and some peripheral flecks, as shown with AF imaging.. Two others affected patients had a more unusual appearance with some macular atrophy in one or both eyes, surrounded by flecks. The visual acuity ranged from 1.0 to 0.1 according to Snellen EDTRS chart. The patient with subfoveal CNV presented a drop of vision form 1.0 to 0.6 within 10 days prior to the diagnosis and also reported some metamorphopsia. FFA and optical computerized tomography (OCT) confirmed a classic CNV. After the 1st injection her vision improved to 1.0 but persistent metamorphopsia and fluid on OCT motivated a second injection. One month after the second injection the OCT was flat and the patient had no symptoms. The results of RDS screening will be presented at the meeting. Conclusion: We present a family with pattern dystrophy, with some members having an unusual fundus appearance, which was mistaken for an early onset dry AMD. The AF imaging is a useful tool in diagnosing this condition. A CNV associated with pattern dystrophy a rare. This is the first report of a successful treatment of the CNV with anti-VEGF intravitreal injections.
Resumo:
Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.
Resumo:
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.
Resumo:
BACKGROUND: Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. METHODS: We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. RESULTS: In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. CONCLUSIONS: This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.
Resumo:
OBJECTIVE: To evaluate the efficacy and safety of pregabalin monotherapy versus placebo for symptomatic pain relief and improvement of patient global assessment in patients with fibromyalgia (FM) enrolled from countries outside the United States. METHODS: This international, multicenter, double-blind, placebo-controlled trial randomly assigned 747 patients with FM to placebo or 300, 450, or 600 mg/day pregabalin twice daily for 14 weeks. Primary efficacy measures were endpoint mean pain scores and Patient Global Impression of Change (PGIC). Secondary outcomes included assessments of sleep and function. RESULTS: Patients in the 450 mg/day pregabalin group showed significant improvements versus placebo in endpoint mean pain score (-0.56; p = 0.0132), PGIC (73% improved vs 56% placebo; p = 0.0017), and function [Fibromyalgia Impact Questionnaire (FIQ) total score -5.85; p = 0.0012]. PGIC was also significant for 600 mg/day pregabalin (69% improved; p = 0.0227). Results for these endpoints were nonsignificant for pregabalin at 300 mg/day and for pain and FIQ score at 600 mg/day. Early onset of pain relief was seen, with separation from placebo detected by Week 1 in all pregabalin groups. All pregabalin doses demonstrated superiority to placebo on the Medical Outcomes Study-Sleep Scale Sleep Disturbance subscale and the Sleep Quality diary. Dizziness and somnolence were the most frequently reported adverse events. CONCLUSION: Pregabalin demonstrated modest efficacy in pain, global assessment, and function in FM at 450 mg/day, and improved sleep across all dose levels, but it did not provide consistent evidence of benefit at 300 and 600 mg/day in this study. Pregabalin was generally well tolerated for the treatment of FM. (Clinical trial registry NCT00333866).
Resumo:
Introduction : The pathological processes caused by Alzheimer's disease (AD) supposedly disrupt communication between and within the distributed cortical networks due to the dysfunction/loss of synapses and myelination breakdown. Indeed, recently (Knyazeva et al. 2008), we have revealed the whole-head topography of EEG synchronization specific to AD. Here we analyze whether and how these abnormalities of synchronization are related to the demyelination of cortico-cortical fibers. Methods : Fifteen newly diagnosed AD patients (CDR 0.5-1) and 15 controls matched for age, participated in the study. Their multichannel (128) EEGs were recorded during 3-5 min at rest. They were submitted to the multivariate phase synchronization (MPS) analysis for mapping regional synchronization. To obtain individual whole-head maps, the MPS was computed for each sensor considering its 2nd nearest topographical neighbors. Separate calculations were performed for the delta, theta, alpha-1/−2, and beta-1/−2 EEG bands. The same subjects were scanned on a 3 Tesla Philips scanner. The protocol included a high-resolution T1-weighted sequence and a Magnetization Transfer Imaging (MTI) acquisition. For each subject, we defined a 3mm thick layer of white matter exactly below the cortical gray matter. The magnetization transfer ratio (MTR) - an estimator of myelination - was calculated for this layer in 39 Brodmann-defined ROIs per hemisphere. To assess the between-group differences, we used a permutation version of Hotelling's T2 test or two-sample T-test (Pcorrected <0.05). For correlation analysis, Spearman Rank Correlation was calculated. Results : In AD patients, we have found an abnormal landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region of the left hemisphere and an increase over the temporo-parieto-occipital regions bilaterally. Also, we have shown a widespread decrease in regional MTR in the AD patients for all the areas excluding motor, premotor, and primary sensory ones. Assuming that AD-related changes in synchronization are associated with demyelination, we hypothesized a correlation between the regional MTR values and MPS values in the hypo- and hyper-synchronized clusters. We found that MPS in the left fronto-temporal hypo-synchronized cluster directly correlates with myelination in BA42-46 of the left hemisphere: the lower the myelination in individual patients, the lower the EEG synchronization. By contrast, in the posterior hyper-synchronized cluster, MPS inversely correlated with myelination, i.e., the lower the myelination, the higher the synchronization. This posterior hyper-synchronization, more characteristic for early-onset AD, probably, results from the initial effect of the disease on cortical inhibition, reducing cortical capacity for decoupling irrelevant connections. Remarkably, it showed different topography of correlations in early- vs. late-onset patients. In the early-onset patients, hyper-synchronization was mainly related to demyelination in posterior BAs, the effect being significant in all the EEG frequency bands. In the late-onset patients, widely distributed correlations were significant for the EEG delta band, suggesting an interaction between the cerebral manifestations of AD and the age of its onset, i.e., topographically selective impairment of cortical inhibition in early-onset AD vs. its wide-spread weakening in old age. Conclusions : Overall, our results document that the degradation of white matter is a significant factor of AD pathogenesis leading to functional dysconnection, the latter being reflected in EEG synchronization abnormalities.
Resumo:
Several studies have analyzed the relationship between androgenetic alopecia and cardiovascular disease (mainly heart disease). However few studies have analyzed lipid values in men and women separately. This case-control study included 300 patients consecutively admitted to an outpatient clinic, 150 with early onset androgenetic alopecia (80 males and 70 females) and 150 controls (80 males and 70 females) with other skin diseases. Female patients with androgenic alopecia showed significant higher triglycerides values (123.8 vs 89.43 mg/dl, p = 0.006), total cholesterol values (196.1 vs 182.3 mg/dl, p = 0.014), LDL-C values (114.1 vs 98.8 mg/dl, p = 0.0006) and lower HDL-C values (56.8 vs 67.7 mg/dl, p <0.0001) versus controls respectively. Men with androgenic alopecia showed significant higher triglycerides values (159.7 vs 128.7 mg/dl, p = 0.04) total cholesterol values (198.3 vs 181.4 mg/dl, p = 0.006) and LDL-C values (124.3 vs 106.2, p = 0.0013) versus non-alopecic men. A higher prevalence of dyslipidemia in women and men with androgenic alopecia has been found. The elevated lipid values in these patients may contribute, alongside other mechanisms, to the development of cardiovascular disease in patient with androgenic alopecia.
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
Résumé Les mutations du gène APP (amyloïde de la protéine de précurseur) sur le chromosome 21 mènent à une surproduction de protéines β amyloïdes dans la maladie d'Alzheimer (MA). Il existe donc un consensus impliquant la cascade amyloïde dans la genèse et le développement de la MA. C'est pourquoi, afin d'évaluer l'hypothèse de la cascade inflammatoire de la MA, on combine des manipulations génétiques chez des modèles de souris transgéniques avec des traitements anti-inflammatoires. Les animaux porteurs d'une mutation génétique induite permettent d'évaluer le rôle de certains gènes dans le développement de la maladie. Pour ce faire j'ai étudié les performances de différentes cohortes de souris soumises à un ensemble de trois épreuves comportementales complémentaires ; la première étudiant les conduites exploratoires, la deuxième évaluant la capacité de l'animal à effectuer un apprentissage de lieu et la troisième explorant l'efficacité des animaux dans une tâche dite d'élimination. Enfin, une évaluation complémentaire a été fondée sur le répertoire des troubles du comportement des animaux. Chez les animaux APP homozygotes, l'organisation de la mémoire se dégrade et se modifie avec l'âge. Chez ces animaux, le déficit des mémoires de références et de travail se manifeste déjà chez les souris jeunes (dès l'âge de 50 jours).De plus, il est apparu un certain nombre de troubles comportementaux. Enfin les APP homozygotes sont ceux qui ont le plus de dépôt de plaques amyloïdes localisé dans l'hippocampe. Chez les animaux APP hétérozygotes, tant la mémoire de référence, utilisée au cours d'un apprentissage de lieu, que la mémoire de travail permettant d'éviter des bras déjà visités, ne sont affectées que chez les sujets de 15 mois. De plus, tous les troubles du comportement sont présents à 15 mois, mais de manière moins intense que chez les animaux APP homozygotes. Un traitement anti-TNF administré aux APP hétérozygotes n'a pas permis d'améliorer leur performance mais a un effet bénéfique sur les troubles du comportement. Enfin, le pourcentage des dépôts de plaques a été estimé à trois fois moins élevé chez ces animaux hétérozygotes de 16 mois que chez les APP homozygotes de 8 mois. Chez les animaux APP hétérozygotes dont le gène TNFα est bloqué, les mémoires de travail et de référence sont altérées déjà à l'âge de 6 mois, en dépit du blocage de l'expression de TNF. Ces jeunes animaux ont même une capacité cognitive inférieure à celle des animaux hétérozygotes APP, en gardant toutefois leur activité et performance exploratoires intactes. Ainsi, il semble que le blocage de l'expression du gène TNFα chez des souris APP n'influence pas leurs capacités cognitives mais permet, d'une part, d'éviter l'apparition des troubles du comportement et d'autre part, ralentit le processus du déclin cognitif. Enfin, le pourcentage de plaques amyloïdes a été évalué à deux fois plus élevés pour les KO TNF-α APP hétérozygotes de 15 mois par rapport à des APP hétérozygotes sans traitement du même âge. Chez les animaux APP hétérozygotes surexprimant le TNFα, cette association génétique péjore la performance cognitive comparée à celle des APP homozygotes. Ces animaux ont une altération des mémoires de travail et de référence équivalente à celle retrouvée chez des APP homozygotes. Un traitement anti-inflammatoire administré à ces souris n'améliore pas la capacité cognitive mais permet d'une part, d'éviter l'apparition des troubles comportementaux, et d'autre part, d'entraîner la presque disparition des plaques amyloïdes. Abstract Mutations on the amyloid precursor protein (APP) gene on chromosome 21 lead to an overproduction of β amyloid in both human early onset familial Alzheimer's Disease (AD) and transgenic (TG) mice. On the other hand, inflammatory responses in the brain seem to contribute to the genesis and evolution of neurodegenerative damage. To study the influence of inflammatory factors - especially TNFα - on brain amyloid and behavioural components, TG mice expressing mutant amyloid precursor protein were treated with anti-TNFα antibody and compared with controls injected with PBS buffer or human globulins, as well as with APP mice knockout for the TNFα gene. The APP/V717 mutation leads to a brain deposit of amyloid and to significant behavioural deficits in both homozygous at different ages and heterozygous only at 15 months. The percentage of amyloid is almost triple in APP+/+ than in APP+/- animals, indicating a gene dosage effect. There is no significant effect of an anti-TNF treatment on the deposit of brain amyloid nor spatial learning capabilities. Transgenic mice show also stereotyped behaviour but the anti-TNF treatment decreases the production of stereotypies. The blockade of gene TNFα seems several cognitive alterations and increases the production of amyloid in APP mice at 15 months; but this combination allows to avoid the appearance of stereotyped behavior and in addition, the process of the cognitive decline slows down. Tg6074 mice (overexpressing TNF) increase deleterious effects on behavioural adaptive resources. Treatment with anti-TNF doesn't show changes in cognitive performances but seems to increase the production of amyloid and the stereotyped behaviour.