866 resultados para EX-VIVO


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need. Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia. Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.

Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.

Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.

Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les effets bénéfiques des lipoprotéines de haute densité (HDL) contre l'athérosclérose ont été attribués, en grande partie, à leur composante protéique majeure, l'apolipoprotéine A-I (apoA-I). Cependant, il y a des indications que l'apoA-I peut être dégradée par des protéases localisées dans les plaques athérosclérotiques humaines, ce qui pourrait réduire l'efficacité des thérapies basées sur les HDL sous certaines conditions. Nous décrivons ici le développement et l'utilisation d'une nouvelle sonde bioactivatable fluorescente dans le proche infrarouge, apoA-I-Cy5.5, pour l'évaluation des activités protéolytiques spécifiques qui dégradent l'apoA-I in vitro, in vivo et ex vivo. La fluorescence basale de la sonde est inhibée par la saturation du fluorophore Cy5.5 sur la protéine apoA-I, et la fluorescence émise par le Cy5.5 (proche infrarouge) est révélée après clivage de la sonde. La protéolyse in vitro de l'apoA-I par des protéases a montré une augmentation de la fluorescence allant jusqu'à 11 fois (n=5, P ≤ 0.05). En utilisant notre nouvelle sonde apoA-I-Cy5.5 nous avons pu quantifier les activités protéolytiques d'une grande variété de protéases, incluant des sérines (chymase), des cystéines (cathepsine S), et des métalloprotéases (MMP-12). En outre, nous avons pu détecter l'activation de la sonde apoA-I-Cy5.5 sur des sections d'aorte de souris athérosclérotiques par zymographie in situ et avons observé qu'en présence d'inhibiteurs de protéases à large spectre, la sonde pourrait être protégée des activités protéolytiques des protéases (-54%, n=6, P ≤ 0,001). L'infusion in vivo de la sonde apoA-I-Cy5.5 dans les souris athérosclérotiques (Ldlr -/--Tg (apoB humaine)) a résulté en utilisant un système d'imagerie moléculaire combinant la fluorescence moléculaire tomographique et la résonance magnétique,en un signal de fluorescence dans l'aorte plus important que celui dans les aortes des souris de type sauvage C57Bl/6J (CTL). Les mesures in vivo ont été confirmées par l'imagerie ex vivo de l'aorte qui a indiqué une augmentation de 5 fois du signal fluorescent dans l'aorte des souris ATX (n=5) par rapport à l'aorte des souris (n=3) CTL (P ≤ 0,05). L'utilisation de cette sonde pourrait conduire à une meilleure compréhension des mécanismes moléculaires qui sous-tendent le développement et la progression de l'athérosclérose et l'amélioration des stratégies thérapeutiques à base de HDL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Dextran-40 is effective in reducing postoperative Doppler-detectable embolization in patients undergoing carotid endarterectomy (CEA). Dextrans are thought to have antithrombotic and antiplatelet effects. The mode of action is unclear. In rats, dextran blocks uptake of tissue plasminogen activator (tPA) by mannose-binding receptors. Because this would have the effect of enhancing endogenous fibrinolysis, we explored this effect of dextran-40 on fibrinolysis in man. METHODS: Twenty patients undergoing endovascular stenting for abdominal aortic aneurysm were randomized to receive 100 mL of 10% dextran-40 or saline, over 1 hour, during their operation in addition to heparin. Blood samples were taken preoperatively, intraoperatively (immediately after operative procedure), and 24 hours postoperatively. Thrombi were formed in a Chandler loop and used to assess endogenous fibrinolysis over 24 hours, measured as the fall in thrombus weight, and the release of fluorescently labelled fibrinogen from the thrombus. Plasma samples were analyzed for markers of fibrinolysis; plasmin-antiplasmin (PAP), PAI-1, and t-PA, and for functional von Willebrand factor (vWF). Platelet response to thrombin and other agonists was measured by flow cytometry. RESULTS: Thrombi formed ex vivo from the intraoperative blood samples from the dextran-treated patients exhibited significantly greater fibrinolysis vs preoperative samples, seen both as a significantly greater percentage reduction in thrombus weight (from 34.7% to 70.6% reduction) and as an 175% increase in the release of fluorescence (P < .05). Fibrinolysis returned to baseline levels the next day. No change was seen in the saline-treated group. Plasma levels of PAP and PAI-1 increased significantly postoperatively in the dextran-treated group vs the saline group (P < .05). The postoperative level of functional VWF was significantly lower in the dextran-treated group vs controls. A specific reduction occurred in the platelet response to thrombin, but not to other agonists, in the intraoperative samples from the dextran-treated group (11.1% vs 37.1%; P = .022), which was not seen in the controls. CONCLUSIONS: These data are consistent with a rise in plasmin due to dextran blockade of tPA uptake in vivo, leading to enhanced fibrinolysis, cleavage of vWF and of the platelet protease-activated receptor-1 (PAR-1) thrombin receptor. This suggests that dextran exerts a combined therapeutic effect, enhancing endogenous fibrinolysis, whilst also reducing platelet adhesion to vWF and platelet activation by thrombin. The proven antithrombotic efficacy of low-dose dextran in carotid surgery may be applicable to wider therapeutic use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of dexamethasone (Dex) on the metabolic parameters, peripheral insulin, and glucose sensitivity in vivo as well as on islet function ex vivo of rats submitted to low-protein diet were analyzed. Dexamethasone (1.0 mg/kg body weight) was administered intraperitoneally daily to adult Wistar rats fed on a normal-protein diet or low-protein diet (LPD) for 5 days, whereas control rats fed on a normal-protein diet or low-protein diet (LP) received saline alone. At the end of the experimental period, LP rats showed a significant reduction in serum insulin, total serum protein, and serum albumin levels compared with rats fed on a normal-protein diet (P < .05). All these parameters tended to be normalized in LPD rats (P < .05); furthermore, these rats exhibited increased serum glucose and nonesterified fatty acid levels compared with LP rats (P < .05). Rats submitted to the low-protein diet demonstrated normal peripheral glucose sensitivity and improved peripheral insulin sensitivity, which was reversed by Dex treatment. A reduced area of islets from LP rats was partially recovered in LPD rats (P < .05). At 16.7 mmol/L glucose, insulin secretion from LPD islets was also partially recovered and was significantly higher than that from LP islets (P < .05). In conclusion, induction of insulin resistance by Dex treatment reverses most of the metabolic alterations in rats submitted to a low-protein diet. In addition, several islet functions were also improved by Dex, confirming the plasticity of pancreatic islets in adverse conditions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective-Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results-Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant approximate to 3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion-Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events. (Arterioscler Thromb Vasc Biol. 2012;32:2185-2196.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alveolar macrophages (AMs) are important cells in the resolution of the inflammatory process and they come into direct contact with inhaled pollutants. Hydroquinone (HQ) is an environmental pollutant and a component of cigarette smoke that causes immunosuppressive effects. In the present work, we showed that mice exposed to low levels of aerosolized HQ (25 ppm; 1 h/day/5 days) presented impaired mononuclear cell migration to the lipopolysaccharide (LPS)-inflamed lung. This may have been due to reduced monocyte chemoattractant protein-1 (MCP-1) secretion into bronchoalveolar lavage fluid (BALF), and it was not related to alterations to mononuclear cell mobilization into the blood or adhesion molecules expression on mononuclear cell membranes. Corroborating the actions of HQ on MCP-1 secretion, reduced MCP-1 concentrations were also found in the supernatant of ex vivo AM and tracheal tissue collected from HQ-exposed mice. A direct action of HQ on MCP-1 secretion, resulting from impaired gene synthesis, was verified by in vitro incubation of naive AMs or tracheal tissue with HQ. The role of reduced levels of MCP-1 in the BALF on monocyte migration was analysed in the human monocytic lineage THP-1 in in vitro chemotaxis assays, which showed that the reduced concentrations of MCP-1 found in the BALF or cell supernatants from HQ-exposed mice impaired cell migration. Considering the fact that MCP-1 presents a broad spectrum of actions on pathophysiological conditions and that resident mononuclear cells are involved in lung tissue homeostasis and in immune host defence, the mechanism of HQ toxicity presented herein might be relevant to the genesis of infectious lung diseases in smokers and in inhabitants of polluted areas. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Untersuchungen zur Charakterisierung der Bystander-Effekte bei einer in vivo Therapie mit Suizidgenen Bei Tumoren eines syngenen Prostatakarzinoms der Ratte (Dunning R3327 AT-1), die zuvor ex vivo mit einem Fusionsgen aus Cytosin Deaminase und Tymidinkinase (AT-1/CDglyTK) transfiziert wurden, konnte durch Kombinationsbehandlung mit Ganciclovir (GCV) und 5-Fluorocytosin (5-FC) komplette Remission und Langzeitüberleben erzielt werden. Dagegen ergaben sich bei Applikation nur einer Pro-Drug lediglich lokale Tumorkontrollraten von 83% (GCV) und 57% (5-FC). Noch geringere therapeutische Effekte einer Kombinationstherapie mit GCV und 5-FC wurden beobachtet, wenn in Anlehnung an die klinische Situation der Anteil suizidgen-tragender Zellen in den Tumoren auf < 20% abgesenkt wurde. Molekularbiologische Analysen dieser Mischtumore zeigen eine Verminderung membranständiger Connexinproteine, welche für den interzellulären Transport phosphorylierter GCV-Metabolite über Gap-junctions erforderlich sind. Pharmakodynamische Untersuchungen mittels 19F-NMR belegen eine effiziente Metabolisierung von 5-FC zu 5-Fluorouracil (5-FU) und den anschließenden Einbau der F-Nukleotide in die DNA. Dennoch sind die intrazellulären und sezernierten 5-FU Konzentrationen für eine Inaktivierung benachbarter Zellen im Sinne eines „lokalen-Bystander-Effektes“ nicht ausreichend. Bei gleichzeitiger Therapie von AT-1 und AT-1/CDglyTK Tumoren, kommt es nicht zur Regression des AT-1 Tumors und damit nicht zu einem „Distalen-Bystander-Effekt“. Dagegen führt die Induktion eines immunologischen Gedächtnisses zu deutlich verminderten Angehraten bei später injizierten AT-1 Tumoren. Die Suizidgen-Therapie ist ein erfolgversprechender Ansatz zur Behandlung maligner Erkrankungen, bei dem die lokalen und distalen Bystander-Effekte individueller Tumoren den therapeutischen Erfolg maßgeblich mitbestimmen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present thesis is concerned with the development of novel cocaine-derived dopamine transporter ligands for the non-invasive exploration of the striatal and extra-striatal dopamine transporter (DAT) in living systems. The presynaptic dopamine transporter acquires an important function within the mediation of dopaminergic signal transduction. Its availability can serve as a measure for the overall integrity of the dopaminergic system. The DAT is upregulated in early Parkinson’s disease (PD), resulting in an increased availability of DAT-binding sites in the striatal DAT domains. Thereby, DAT imaging has become an important routine diagnostic tool for the early diagnosis of PD in patients, as well as for the differentiation of PD from symptomatically similar medical conditions. Furthermore, the dopaminergic system is involved in a variety of psychiatric diseases. In this regard, DAT-selective imaging agents may provide detailed insights into the scientific understanding of the biochemical background of both, the progress as well as the origins of the symptoms. DAT-imaging may also contribute to the determination of the dopaminergic therapeutic response for a given medication and thereby contribute to more convenient conditions for the patient. From an imaging point of view, the former demands a high availability of the radioactive probe to facilitate broad application of the modality, whereas the latter profits from short-lived probes, suitable for multi-injection studies. Therefore, labelling with longer-lived 18F-fluoride and in particular the generator nuclide 68Ga is worthwhile for clinical routine imaging. In contrast, the introduction of a 11C-label is a prerequisite for detailed scientific studies of neuronal interactions. The development of suitable DAT-ligands for medical imaging has often been complicated by the mixed binding profile of many compounds that that interact with the DAT. Other drawbacks have included high non-specific binding, extensive metabolism and slow accumulation in the DAT-rich brain areas. However, some recent examples have partially overcome the mentioned complications. Based on the structural speciality of these leads, novel ligand structures were designed and successfully synthesised in the present work. A structure activity relationship (SAR) study was conducted wherein the new structural modifications were examined for their influence on DAT-affinity and selectivity. Two of the compounds showed improvements in in vitro affinity for the DAT as well as selectivity versus the serotonin transporter (SERT) and norepinephrine transporter (NET). The main effort was focussed on the high-affinity candidate PR04.MZ, which was subsequently labelled with 18F and 11C in high yield. An initial pharmacological characterisation of PR04.MZ in rodents revealed highly specific binding to the target brain structures. As a result of low non-specific binding, the DAT-rich striatal area was clearly visualised by autoradiography and µPET. Furthermore, the radioactivity uptake into the DAT-rich brain regions was rapid and indicated fast binding equilibrium. No radioactive metabolite was found in the rat brain. [18F]PR04.MZ and [11C]PR04.MZ were compared in the primate brain and the plasma metabolism was studied. It was found that the ligands specifically visualise the DAT in high and low density in the primate brain. The activity uptake was rapid and quantitative evaluation by Logan graphical analysis and simplified reference tissue model was possible after a scanning time of 30 min. These results further reflect the good characteristics of PR04.MZ as a selective ligand of the neuronal DAT. To pursue 68Ga-labelling of the DAT, initial synthetic studies were performed as part of the present thesis. Thereby, a concept for the convenient preparation of novel bifunctional chelators (BFCs) was developed. Furthermore, the suitability of novel 1,4,7-triazacyclononane based N3S3-type BFCs for biomolecule-chelator conjugates of sufficient lipophilicity for the penetration of the blood-brain-barrier was elucidated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Makromolekulare Wirkstoffträgersysteme sind von starkem Interesse bezüglich der klinischen Anwendung chemotherapeutischer Agenzien. Um ihr klinisches Potential zu untersuchen ist es von besonderer Bedeutung das pharmakokinetische Profil in vivo zu bestimmen. Jede Veränderung der Polymerstruktur beeinflusst die Körperverteilung des entsprechenden Makromoleküls. Aufgrund dessen benötigt man detailliertes Wissen über Struktur-Eigenschaftsbeziehungen im lebenden Organismus, um das Nanocarrier System für zukünftige Anwendungen einzustellen. In dieser Beziehung stellt das präklinische Screening mittels radioaktiver Markierung und Positronen-Emissions-Tomographie eine nützliche Methode für schnelle sowie quantitative Beobachtung von Wirkstoffträgerkandidaten dar. Insbesondere poly(HPMA) und PEG sind im Arbeitsgebiet Polymer-basierter Therapeutika stark verbreitet und von ihnen abgeleitete Strukturen könnten neue Generationen in diesem Forschungsbereich bieten.rnDie vorliegende Arbeit beschreibt die erfolgreiche Synthese verschiedener HPMA und PEG basierter Polymer-Architekturen – Homopolymere, Statistische und Block copolymere – die mittels RAFT und Reaktivesterchemie durchgeführt wurde. Des Weiteren wurden die genannten Polymere mit Fluor-18 und Iod-131 radioaktiv markiert und mit Hilfe von microPET und ex vivo Biodistributionsstudien in tumortragenden Ratten biologisch evaluiert. Die Variation in Polymer-Architektur und darauffolgende Analyse in vivo resultierte in wichtige Schlussfolgerungen. Das hydrophile / lipophile Gleichgewicht hatte einen bedeutenden Einfluss auf das pharmakokinetische Profil, mit besten in vivo Eigenschaften (geringe Aufnahme in Leber und Milz sowie verlängerte Blutzirkulationszeit) für statistische HPMA-LMA copolymere mit steigendem hydrophoben Anteil. Außerdem zeigten Langzeitstudien mit Iod-131 eine verstärkte Retention von hochmolekularen, HPMA basierten statistischen Copolymeren im Tumorgewebe. Diese Beobachtung bestätigte den bekannten EPR-Effekt. Hinzukommend stellen Überstrukturbildung und damit Polymergröße Schlüsselfaktoren für effizientes Tumor-Targeting dar, da Polymerstrukturen über 200 nm in Durchmesser schnell vom MPS erkannt und vom Blutkreislauf eliminiert werden. Aufgrund dessen wurden die hier synthetisierten HPMA Block copolymere mit PEG Seitengruppen chemisch modifiziert, um eine Verminderung in Größe sowie eine Reduktion in Blutausscheidung zu induzieren. Dieser Ansatz führte zu einer erhöhten Tumoranreicherung im Walker 256 Karzinom Modell. Generell wird die Körperverteilung von HPMA und PEG basierten Polymeren stark durch die Polymer-Architektur sowie das Molekulargewicht beeinflusst. Außerdem hängt ihre Effizienz hinsichtlich Tumorbehandlung deutlich von den individuellen Charakteristika des einzelnen Tumors ab. Aufgrund dieser Beobachtungen betont die hier vorgestellte Dissertation die Notwendigkeit einer detaillierten Polymer-Charakterisierung, kombiniert mit präklinischem Screening, um polymere Wirkstoffträgersysteme für individualisierte Patienten-Therapie in der Zukunft maßzuschneidern.rn