987 resultados para ETHYLENE POLYMERIZATION CATALYSTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of a sterically tailored ligand array (M)_2((C_5H_2-2-Si(CH_3)_3-4-C(CH_3)_3)S_2i(CH_3)_2]("M_2Bp") (M = Li, 16; K, 19) is described. Transmetallation of Li_2Bp with YCl_3(THF)_3 affords exclusively the C_2 symmetric product rac-[BpY(µ_2-Cl)_2Li(THF)_2], 20. A X-ray crystal structure of 20 has been determined; triclinic, P1, a= 13.110 (8), b = 17.163 (15), c = 20.623 (14) Å, α = 104.02 (7), β = 99.38 (5), γ = 100.24 (6)° , Z = 4, R = 0.056. Transmetallation of K_2Bp with YCl_3(THF)_3 affords the halide free complex rac-BpYCl, 23. The corresponding rac-BpLaCl, 28, is prepared in an anlogous manner. In all cases the achiral meso isomer is not obtained since only for the racemic isomers are the unfavorable steric interactions between the Si(CH3)_3 groups in the narrow portion of the [Cp-M'-Cp] wedge avoided. Alkylation of 20 or 23 with LiCH(Si(CH_3)_3)_2 affords rac-BpYCH(Si(CH_3)_3)_2, 26 in good yield. Alkylation of 28 with LiCH(Si(CH_3)_3)_2 affords rac-BpLaCH(Si(CH_3)_3)_2 29. Hydrogenation of 26 cleanly affords the bridging hydride species [BpY(µ_2-H)]_2, 27, as the homochiral (R,R) and (S,S) dimeric pairs. 26 is an efficient initiator for the polymerization of ethylene to high molecular weight linear polyethylene. 27 catalyzes the polymerization of propylene (25% v/v in methylcyclohexane) and neat samples of 1-butene, 1-pentene, 1-hexene to moderately high molecular weight polymers: polypropylene (M_n = 4,200, PDI 2.32, T_m 157 °C); poly-1-butene (M_n = 8,500, PDI 3.44, T_m 105 °C); poly-1-pentene (M_n = 20,000, PDI 1.99, T_m 73 °C); poly-1-hexene (M_n = 24,000, PDI 1.75, T_m < 25 °C). ^(13)C NMR spectra at the pentad analysis level indicates that the degree of isotacticity is 99% mmmm for all polymer samples. 27 is the first single component iso-specific α-olefin polymerization catalyst. The presumed origins of the high isospecificity are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and X-ray diffraction study of bis(pentamethylcyclopentadienyl) ethylene titanium (I) are reported. This complex represents the first example of an isolable ethylene adduct of a group IV metal, a key intermediate in Ziegler-Natta olefin polymerization schemes. While treatment of I with ethylene leads to only traces of polymer after months, I participates in a wide range of stoichiometric and catalytic reactions. These include the catalytic conversion of ethylene specifically to butadiene and ethane and the catalytic isomerization of alkenes. Detailed studies have been carried out on the stoichiometric reactions of I with nitriles and alkynes. At low temperatures, nitriles react to form metallacycloimine species which more slowly undergo a formal 1,3-hydrogen shift to generate metallacycloeneamines. The lowest energy pathway for this rearrangement is an intramolecular hydrogen shift which is sensitive to the steric bulk of the R substituent. The reactions of I with alkynes yield metallacyclopentene complexes with high regioisomer selectivity. Carbonylation of the metallacyclopentene (η-C5Me55)2TiC(CH3)=C(CH3)CH2 under relatively mild conditions cleanly produces the corresponding cyclopentenone and [C5(CH3)5]2Ti(CO)2. Compounds derived from CO2 and acetaldehyde have also been isolated.

The synthesis and characterization of bis-(η-pentamethylcyclopentadienyl) niobium(III) tetrahydroborate (II) are described and a study of its temperature-dependent proton NMR spectroscopic behavior is reported. The complex is observed to undergo a rapid intramolecular averaging process at elevated temperatures. The free energy of activation, ΔG = 16.4 ± 0.4 kcal/mol, is calculated. The reinvestigation of a related compound, bis(η-cyclopentadienyl)niobium(III) tetrahydroborate, established ΔG = 14.6 ± 0.2 kcal/mol for the hydrogen exchange process. The tetrahydroborate complex, II reacts with pyridine and dihydrogen to yield (η-C5Me55)2NbH3 (III). The reactivity of III with CO and ethylene is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of well-defined ruthenium olefin metathesis catalysts that are highly active and stable to a variety of functional groups, the synthesis of complex organic molecules and polymers is now possible; this is reviewed in Chapter 1. The majority of the rest of this thesis describes the application of these catalysts towards the synthesis of novel polymers that may be useful in biological applications and investigations into their efficacy.

A method was developed to produce polyethers by metathesis, and this is described in Chapters 2 and 3. An unsaturated 12-crown-4 analog was made by template- directed ring-closing metathesis (RCM) and utilized as a monomer for the synthesis of unsaturated polyethers by ring-opening metathesis polymerization (ROMP). The yields were high and a range of molecular weights was accessible. In a similar manner, substituted polyethers with various backbones were synthesized: polymers with benzo groups along the backbone and various concentrations of amino acids were prepared. The results from in vitro toxicity tests of the unsubstituted polyethers are considered.

The conditions necessary to synthesize polynorbornenes with pendent bioactive peptides were explored as illustrated in Chapter 4. First, the polymerization of various norbornenyl monomers substituted with glycine, alanine or penta(ethylene glycol) is described. Then, the syntheses of polymers substituted with peptides GRGD and SRN, components of a cell binding domain of fibronectin, using newly developed ruthenium initiators are discussed.

In Chapter 5, the syntheses of homopolymers and a copolymer containing GRGDS and PHSRN, the more active forms of the peptides, are described. The ability of the polymers to inhibit human dermal fibroblast cell adhesion to fibronectin was assayed using an in vitro competitive inhibition assay, and the results are discussed. It was discovered that the copoymer substituted with both GRGDS and PHSR peptides was more active than both the GRGDS-containing homopolymer and the GRGDS free peptide.

Historically, one of the drawbacks to using metathesis is the removal of the residual ruthenium at the completion of the reaction. Chapter 6 describes a method where the water soluble tris(hydroxymethyl)phosphine is utilized to facilitate the removal of residual ruthenium from RCM reaction products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.

Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.

A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Publications about olefin metathesis will generally discuss how the discovery and development of well-defined catalysts to carry out this unique transformation have revolutionized many fields, from natural product and materials chemistry, to green chemistry and biology. However, until recently, an entire manifestation of this methodology had been inaccessible. Except for a few select examples, metathesis catalysts favor the thermodynamic trans- or E-olefin products in cross metathesis (CM), macrocyclic ring closing metathesis (mRCM), ring opening metathesis polymerization (ROMP), and many other types of reactions. Judicious choice of substrates had allowed for the direct synthesis of cis- or Z-olefins or species that could be converted upon further reaction, however the catalyst controlled synthesis of Z-olefins was not possible until very recently.

Research into the structure and stability of metallacyclobutane intermediates has led to the proposal of models to impart Z-selectivity in metathesis reactions. Having the ability to influence the orientation of metallacyclobutane substituents to cause productive formation of Z- double bonds using steric and electronic effects was highly desired. The first successful realization of this concept was by Schrock and Hoveyda et al. who synthesized monoaryloxide pyrolidine (MAP) complexes of tungsten and molybdenum that promoted Z-selective CM. The Z-selectivity of these catalysts was attributed to the difference in the size of the two axial ligands. This size difference influences the orientation of the substituents on the forming/incipient metallacyclobutane intermediate to a cis-geometry and leads to productive formation of Z-olefins. These catalysts have shown great utility in the synthesis of complicated natural product precursors and stereoregular polymers. More recently, ruthenium catalysts capable of promoting Z-selective metathesis have been reported by our group and others. This thesis will discuss the development of ruthenium-based NHC chelated Z-selective catalysts, studies probing their unique metathesis mechanism, and synthetic applications that have been investigated thus far.

Chapter 1 will focus on studies into the stability of NHC chelated complexes and the synthesis of new and improved stable chelating architectures. Chapter 2 will discuss applications of the highly active and Z-selective developed in Chapter 1, including the formation of lepidopteran female sex pheromones using olefin cross metathesis and highly Z- and highly E-macrocycles using macrocyclic ring closing metathesis and Z-selective ethenolysis. Chapter 3 will explore studies into the unique mechanism of olefin metathesis reactions catalyzed by these NHC chelated, highly Z-selective catalysts, explaining observed trends by investigating the stability of relevant, substituted metallacyclobutane intermediates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of catalysts that selectively oligomerize light olefins for uses in polymers and fuels remains of interest to the petrochemical and materials industry. For this purpose, two tantalum compounds, (FI)TaMe2Cl2 and (FI)TaMe4, implementing a previously reported phenoxy-imine (FI) ligand framework, have been synthesized and characterized with NMR spectroscopy and X-ray crystallography. When tested for ethylene oligomerization catalysis, (FI)TaMe2Cl2 was found to dimerize ethylene when activated with Et2Zn or EtMgCl, and (FI)TaMe4 dimerized ethylene when activated with B(C6F5)3, both at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconocene aldehyde and ketone complexes were synthesized in high yield by treatment of zirconocene acyl complexes with trimethylaluminum or diisobutylaluminum hydride. These complexes, which are activated by dialkylaluminum chloride ligands, inserted unsaturated substrates such as alkynes, allenes, ethylene, nitriles, ketenes, aldehydes, ketones, lactones, and acid chlorides with moderate to high conversion. Insertion of aldehyde substrates yielded zirconocene diolate complexes with up to 20:1 (anti:syn) diastereoselectivity. The zirconocene diolates were hydrolyzed to afford unsymmetrical 1,2-diols in 40-80% isolated yield. Unsymmetrical ketones gave similar insertion yields with little or no diastereoselectivity. A high yielding one-pot method was developed that coupled carbonyl substrates with zirconocene aldehyde complexes that were derived from olefins by hydrozirconation and carbonylation. The zirconocene aldehyde complexes also inserted carbon monoxide and gave acyloins in 50% yield after hydrolysis.

The insertion reaction of aryl epoxides with the trimethylphoshine adduct of titanocene methylidene was examined. The resulting oxytitanacyclopentanes were carbonylated and oxidatively cleaved with dioxygen to afford y-lactones in moderate yields. Due to the instability and difficult isolation of titanocene methylidene trimethylphoshine adducts, a one-pot method involving the addition of catalytic amounts of trimethylphosphine to β,β-dimethyltitanacyclobutane was developed. A series of disubstituted aryl epoxides were examined which gave mixtures of diastereomeric insertion products. Based on these results, as well as earlier Hammett studies and labeling experiments, a biradical transition state intermediate is proposed. The method is limited to aryl substituted epoxide substrates with aliphatic examples showing no insertion reactivity.

The third study involved the use of magnesium chloride supported titanium catalysts for the Lewis acid catalyzed silyl group transfer condensation of enol silanes with aldehydes. The reaction resulted in silylated aldol products with as many as 140 catalytic turnovers before catalyst inactivation. Low diastereoselectivities favoring the anti-isomer were consistent with an open transition state involving a titanium atom bound to the catalyst surface. The catalysts were also used for the aldol group transfer polymerization of t-butyldimethylsilyloxy-1-ethene resulting in polymers with molecular weights of 5000-31,000 and molar mass dispersities of 1.5-2.8. Attempts to polymerize methylmethacrylate using GTP proved unsuccessful with these catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TiO2-supported zeolite with core/shell heterostructure was fabricated by coating aluminosilicate zeolite (ASZ) on the TiO2 inoculating seed via in situ hydrothermal synthesis. The catalysts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen physisorption (BET), and Fourier transform infrared spectroscopy (FT-IR). The surface acidity of the catalysts was measured by pyridine-TPD method. The catalytic performance of the catalysts for ethanol dehydration to ethylene was also investigated. The results show that the TiO2-supported zeolite composite catalyst with core/shell heterostructure exhibits prominent conversion efficiency for ethanol dehydration to ethylene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface initiated polymerization (SIP) has become an attractive method for tailoring physical and chemical properties of surfaces for a broad range of applications. Most of those application relied on the merit of a high density coating. In this study we explored a long overlooked field of SIP. SIP from substrates of low initiator density. We combined ellipsometry with AFM to investigate the effect of initiatior density and polymerization time on the morphology of polymer coatings. In addition, we carefully adjusted the nanoscale separation of polymer chains to achieve a balance between nonfouling and immobilization capacities. We further tested the performance of those coating on various biosensors, such as quartz crystal microbalance, surface plasmon resonance, and protein microarrays. The optimized matrices enhanced the performance of those biosensors. This report shall encourage researches to explore new frontiers in SIP that go beyond polymer brushes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and homogeneous dispersion of spherical Pt metal particles with a narrow particle-size distribution. TEM images show that the Pt particle size is in the range of 2-5 nm with a peak at 2.6 nm, which is consistent with 2.5 nm obtained from the XRD broadening calculation. Surface chemical modifications of MWNTs and water content in EG solvent are found to be the key factors in depositing Pt particles on MWNTs. In the case of the direct methanol fuel cell (DMFC) test, the Pt/MWNT catalyst prepared by EG reduction is slightly superior to the catalyst prepared by aqueous reduction and displays significantly higher performance than the Pt/XC-72 catalyst. These differences in catalytic performance between the MWNT-supported or the carbon black XC-72-supported catalysts are attributed to a greater dispersion of the supported Pt particles when the EG method is used, in contrast to aqueous HCHO reduction and to possible unique structural and higher electrical properties when contrasting MWNTs to carbon black XC-72 as a support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel star-like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with feed molar ratio of 1:2. H-1, C-13, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel catalyst system based on nickel(II) tetraphenylporphyrin (Ni(II)TPP) and methylaluminoxane for styrene polymerization was developed. This catalyst system has a high thermal stability and show fairly good activity. The obtained polystyrene (PS) was isotactic-rich atactic polymer by C-13 NMR analysis, and its molecular weight distribution was rather narrow (M-w/M-n approximate to 1.6, by GPC analysis). ESR revealed that Ni(II)TPP pi cation radicals were formed in the polymerization and could remain in the resulting PS stably. The mechanism of the polymerization was discussed and a special coordination mechanism was proposed. The PS product containing Ni(II)TPP pi cation radicals can be used as a potential functional material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newrareearth metal bis(alkyl) complexes [(NPNPh)Ln(CH2SiMe3)(2)(THF) (NPNPh:N(Ph)PPh2=NC6H2Me3-2,4,6; Ln = Sc (3a), Ln = Y (3b), Ln = Lu (3c)) and [(NPNPy)Sc(CH2SiMe3)(2)(THF)1 (NPNPY = N(Py)PPh2=NC6H2Me3-2,4,6) (3d)) have been prepared via protonolysis reaction between rare earth metal tris(alkyl)s and the corresponding iminophosphonamines. Complexes 3a-d are analogous monomers of THF solvate. Each metal ion coordinates to a eta(2)-chelated NPN ligand and two cis-located alkyl groups, adopting tetrahedron geometry.