232 resultados para ELECTROSPUN POLYACRYLONITRILE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple way to synthesize beta-Ga2O3 nanoribbons and tubes by electrospinning is introduced. The diameters of the electrospun fibers range from 150 nm to 2.5 mu m and their lengths reach up to several millimeters. The relationship among precursors, precursor concentrations, and crystal growth of beta-Ga2O3 nanoribbons and tubes are discussed. The structures of beta-Ga2O3 fibers have been investigated by various methods such as thermogravimetric (TG) and differential thermal analysis (DTA), X-ray diffraction, FT-IR, Raman spectra, scanning electron micrograph (SEM), and transmission electron micrograph (TEM).

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2-cyanoprop-2-yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANS were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. H-1 NMR analysis confirmed the high chain-end functionality of the resultant polymers.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new route based on electrospinning is designed for the preparation of silver chloride/polyacrylonitrile (AgCl/PAN) composite nanofibres. The AgCl nanoparticles uniform in size, were dispersed on the surfaces of the composite nanofibres. Transmission electron microscopy (TEM) images gave direct evidence of the structure. X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) confirmed the presence of AgCl crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to develop implantable BCNU-toaded poly(ethylene glycol)poly(L-lactic acid) (PEG-PLLA) diblock copolymer fibers for the controlled release of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU was well incorporated and dispersed uniformly in biodegradable PEG-PLLA fibers by using electrospinning method. Environmental Scanning Electron Microscope (ESEM) images indicated that the BCNU-loaded PEG-PLLA fibers looked uniform and their surfaces were reasonably smooth. Their average diameters were below 1500 nm. The release rate of BCNU from the fiber mats increased with the increase of BCNU loading amount. In vitro cytotoxicity assay showed that the PEG-PLLA fibers themselves did not affect the growth of rat Glioma C6 cells. Antitumor activity of the BCNU-loaded fibers against the cells was kept over the whole experiment process, while that of pristine BCNU disappeared within 48 h. These results strongly suggest that the BCNU/PEG-PLLA fibers have an effect of controlled release of BCNU and are suitable for postoperative chemotherapy of cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform core-sheath nanofibers are prepared by electrospinning a water-in-oil emulsion in which the aqueous phase consists of a poly(ethylene oxide) (PEO) solution in water and the oily phase is a chloroform solution of an amphiphilic poly(ethylene glycol)-poly(L-lactic acid) (PEGPLA) diblock copolymer. The obtained fibers are composed of a PEO core and a PEG-PLA sheath with a sharp boundary in between. By adjusting the emulsion composition and the emulsification parameters, the overall fiber size and the relative diameters of the core and the sheath can be changed. A mechanism is proposed to explain the process of transformation from the emulsion to the core-sheath fibers, i.e., the stretching and evaporation induced de-emulsification. In principle, this process can be applied to other systems to prepare core-sheath fibers in place of concentric electrospinning and it is especially suitable for fabricating composite nanofibers that contain water-soluble drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrated in this paper an electrospinning technique could be employed to prepare the single layer macroporous films and fibrous networks of poly(vinyl alcohol) (PVA). A crucial element using electrospinning on the development of these electrospun structures was to shorten the distance of from the needle tip to the collector (L), which resulted in the bond of the wet fibers deposited on the collector at the junctions. The morphologies and average pore size of electrospun structures of PVA were mainly predominated by L and the time of collecting wet fibers on the collector. In addition, experimental results showed that an increase of the PVA concentration or a decrease of the applied voltage could also diminish slightly the average pore size of electrospun productions. Furthermore, a 60 degrees C absolute ethanol soak to PVA electrospun production led them to be able to stabilize in water for 1 month against disintegration. Differential scanning calorimetry (DSC) demonstrated that the 60 degrees C ethanol soak enhanced the degree of crystallinity of PVA production. The structural characteristic of macroporous films and networks in combination with their easy processability suggests potential utility in issue engineering applications.