998 resultados para ELECTROMAGNETIC DEVICES
Resumo:
Successful healing of long bone fractures is dependent on the mechanical environment created within the fracture, which in turn is dependent on the fixation strategy. Recent literature reports have suggested that locked plating devices are too stiff to reliably promote healing. However, in vitro testing of these devices has been inconsistent in both method of constraint and reported outcomes, making comparisons between studies and the assessment of construct stiffness problematic. Each of the methods previously used in the literature were assessed for their effect on the bending of the sample and concordant stiffness. The choice of outcome measures used in in vitro fracture studies was also assessed. Mechanical testing was conducted on seven hole locked plated constructs in each method for comparison. Based on the assessment of each method the use of spherical bearings, ball joints or similar is suggested at both ends of the sample. The use of near and far cortex movement was found to be more comprehensive and more accurate than traditional centrally calculated inter fragmentary movement values; stiffness was found to be highly susceptible to the accuracy of deformation measurements and constraint method, and should only be used as a within study comparison method. The reported stiffness values of locked plate constructs from in vitro mechanical testing is highly susceptible to testing constraints and output measures, with many standard techniques overestimating the stiffness of the construct. This raises the need for further investigation into the actual mechanical behaviour within the fracture gap of these devices.
Resumo:
The primary objective of this study was to investigate the impact of animal-level factors including energy balance and environmental/management stress, on the ovarian function of Bos indicus heifers treated to synchronize ovulation. Two-year-old Brahman (BN) (n = 30) and BN-cross (n = 34) heifers were randomly allocated to three intravaginal progesterone-releasing device (IPRD) treatment groups: (i) standard-dose IPRD [Cue-Mate (R) (CM) 1.56 g; n = 17]; (ii) half-dose IPRD [0.78 g progesterone (P4); CM 0.78 g; n = 15]; (iii) half-dose IPRD + 300 IU equine chorionic gonadotrophin at IPRD removal (CM 0.78 g + G; n = 14); (iv) and a control group, 2x PGF2a [500 mu g prostaglandin F2a (PGF2a)] on Day -16 and -2 (n = 18). Intravaginal progesterone-releasing device-treated heifers received 250 mu g PGF2a at IPRD insertion (Day -10) and IPRD removal (Day -2) and 1 mg oestradiol benzoate on Day -10 and -1. Heifers were managed in a small feedlot and fed a defined ration. Ovarian function was evaluated by ultrasonography and plasma P4 throughout the synchronized and return cycles. Energy balance was evaluated using plasma insulin-like growth factor 1 (IGF-I) and glucose concentrations. The impact of environmental stressors was evaluated using plasma cortisol concentration. Heifers that had normal ovarian function had significantly higher IGF-I concentrations at commencement of the experiment (p = 0.008) and significantly higher plasma glucose concentrations at Day -2 (p = 0.040) and Day 4 (p = 0.043), than heifers with abnormal ovarian function. There was no difference between the mean pre-ovulatory cortisol concentrations of heifers that ovulated or did not ovulate. However, heifers that ovulated had higher cortisol concentrations at Day 4 (p = 0.056) and 6 (p = 0.026) after ovulation than heifers that did not ovulate.
Resumo:
Background People admitted to intensive care units and those with chronic health care problems often require long-term vascular access. Central venous access devices (CVADs) are used for administering intravenous medications and blood sampling. CVADs are covered with a dressing and secured with an adhesive or adhesive tape to protect them from infection and reduce movement. Dressings are changed when they become soiled with blood or start to come away from the skin. Repeated removal and application of dressings can cause damage to the skin. The skin is an important barrier that protects the body against infection. Less frequent dressing changes may reduce skin damage, but it is unclear whether this practice affects the frequency of catheter-related infections. Objectives To assess the effect of the frequency of CVAD dressing changes on the incidence of catheter-related infections and other outcomes including pain and skin damage. Search methods In June 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE and EBSCO CINAHL. We also searched clinical trials registries for registered trials. There were no restrictions with respect to language, date of publication or study setting. Selection criteria All randomised controlled trials (RCTs) evaluating the effect of the frequency of CVAD dressing changes on the incidence of catheter-related infections on all patients in any healthcare setting. Data collection and analysis We used standard Cochrane review methodology. Two review authors independently assessed studies for inclusion, performed risk of bias assessment and data extraction. We undertook meta-analysis where appropriate or otherwise synthesised data descriptively when heterogeneous. Main results We included five RCTs (2277 participants) that compared different frequencies of CVAD dressing changes. The studies were all conducted in Europe and published between 1995 and 2009. Participants were recruited from the intensive care and cancer care departments of one children's and four adult hospitals. The studies used a variety of transparent dressings and compared a longer interval between dressing changes (5 to15 days; intervention) with a shorter interval between changes (2 to 5 days; control). In each study participants were followed up until the CVAD was removed or until discharge from ICU or hospital. - Confirmed catheter-related bloodstream infection (CRBSI) One trial randomised 995 people receiving central venous catheters to a longer or shorter interval between dressing changes and measured CRBSI. It is unclear whether there is a difference in the risk of CRBSI between people having long or short intervals between dressing changes (RR 1.42, 95% confidence interval (CI) 0.40 to 4.98) (low quality evidence). - Suspected catheter-related bloodstream infection Two trials randomised a total of 151 participants to longer or shorter dressing intervals and measured suspected CRBSI. It is unclear whether there is a difference in the risk of suspected CRBSI between people having long or short intervals between dressing changes (RR 0.70, 95% CI 0.23 to 2.10) (low quality evidence). - All cause mortality Three trials randomised a total of 896 participants to longer or shorter dressing intervals and measured all cause mortality. It is unclear whether there is a difference in the risk of death from any cause between people having long or short intervals between dressing changes (RR 1.06, 95% CI 0.90 to 1.25) (low quality evidence). - Catheter-site infection Two trials randomised a total of 371 participants to longer or shorter dressing intervals and measured catheter-site infection. It is unclear whether there is a difference in risk of catheter-site infection between people having long or short intervals between dressing changes (RR 1.07, 95% CI 0.71 to 1.63) (low quality evidence). - Skin damage One small trial (112 children) and three trials (1475 adults) measured skin damage. There was very low quality evidence for the effect of long intervals between dressing changes on skin damage compared with short intervals (children: RR of scoring ≥ 2 on the skin damage scale 0.33, 95% CI 0.16 to 0.68; data for adults not pooled). - Pain Two studies involving 193 participants measured pain. It is unclear if there is a difference between long and short interval dressing changes on pain during dressing removal (RR 0.80, 95% CI 0.46 to 1.38) (low quality evidence). Authors' conclusions The best available evidence is currently inconclusive regarding whether longer intervals between CVAD dressing changes are associated with more or less catheter-related infection, mortality or pain than shorter intervals.
Resumo:
Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
In recent years, XML has been widely adopted as a universal format for structured data. A variety of XML-based systems have emerged, most prominently SOAP for Web services, XMPP for instant messaging, and RSS and Atom for content syndication. This popularity is helped by the excellent support for XML processing in many programming languages and by the variety of XML-based technologies for more complex needs of applications. Concurrently with this rise of XML, there has also been a qualitative expansion of the Internet's scope. Namely, mobile devices are becoming capable enough to be full-fledged members of various distributed systems. Such devices are battery-powered, their network connections are based on wireless technologies, and their processing capabilities are typically much lower than those of stationary computers. This dissertation presents work performed to try to reconcile these two developments. XML as a highly redundant text-based format is not obviously suitable for mobile devices that need to avoid extraneous processing and communication. Furthermore, the protocols and systems commonly used in XML messaging are often designed for fixed networks and may make assumptions that do not hold in wireless environments. This work identifies four areas of improvement in XML messaging systems: the programming interfaces to the system itself and to XML processing, the serialization format used for the messages, and the protocol used to transmit the messages. We show a complete system that improves the overall performance of XML messaging through consideration of these areas. The work is centered on actually implementing the proposals in a form usable on real mobile devices. The experimentation is performed on actual devices and real networks using the messaging system implemented as a part of this work. The experimentation is extensive and, due to using several different devices, also provides a glimpse of what the performance of these systems may look like in the future.
Resumo:
The Ajax approach has outgrown its origin as shorthand for "Asynchronous JavaScript + XML". Three years after its naming, Ajax has become widely adopted by web applications. Therefore, there exists a growing interest in using those applications with mobile devices. This thesis evaluates the presentational capability and measures the performance of five mobile browsers on the Apple iPhone and Nokia models N95 and N800. Performance is benchmarked through user-experienced response times as measured with a stopwatch. 12 Ajax toolkit examples and 8 production-quality applications are targeted, all except one in their real environments. In total, over 1750 observations are analyzed and included in the appendix. Communication delays are not considered; the network connection type is WLAN. Results indicate that the initial loading time of an Ajax application can often exceed 20 seconds. Content reordering may be used to partially overcome this limitation. Proper testing is the key for success: the selected browsers are capable of presenting Ajax applications if their differing implementations are overcome, perhaps using a suitable toolkit.
Resumo:
An overview of the human side of the wearable technology trend in the medical industry. Forecasted as the next wave of technological innovations, wearable and physically embedded medical devices to help manage patients’ health conditions are set to change the healthcare experience for both patients and healthcare providers. The idea here is to pay closer attention to how particular patients experience these devices, so they can be designed with empathy for specific patient needs to maintain optimum health.
Resumo:
Real-time scheduling algorithms, such as Rate Monotonic and Earliest Deadline First, guarantee that calculations are performed within a pre-defined time. As many real-time systems operate on limited battery power, these algorithms have been enhanced with power-aware properties. In this thesis, 13 power-aware real-time scheduling algorithms for processor, device and system-level use are explored.
Resumo:
In recent years, XML has been accepted as the format of messages for several applications. Prominent examples include SOAP for Web services, XMPP for instant messaging, and RSS and Atom for content syndication. This XML usage is understandable, as the format itself is a well-accepted standard for structured data, and it has excellent support for many popular programming languages, so inventing an application-specific format no longer seems worth the effort. Simultaneously with this XML's rise to prominence there has been an upsurge in the number and capabilities of various mobile devices. These devices are connected through various wireless technologies to larger networks, and a goal of current research is to integrate them seamlessly into these networks. These two developments seem to be at odds with each other. XML as a fully text-based format takes up more processing power and network bandwidth than binary formats would, whereas the battery-powered nature of mobile devices dictates that energy, both in processing and transmitting, be utilized efficiently. This thesis presents the work we have performed to reconcile these two worlds. We present a message transfer service that we have developed to address what we have identified as the three key issues: XML processing at the application level, a more efficient XML serialization format, and the protocol used to transfer messages. Our presentation includes both a high-level architectural view of the whole message transfer service, as well as detailed descriptions of the three new components. These components consist of an API, and an associated data model, for XML processing designed for messaging applications, a binary serialization format for the data model of the API, and a message transfer protocol providing two-way messaging capability with support for client mobility. We also present relevant performance measurements for the service and its components. As a result of this work, we do not consider XML to be inherently incompatible with mobile devices. As the fixed networking world moves toward XML for interoperable data representation, so should the wireless world also do to provide a better-integrated networking infrastructure. However, the problems that XML adoption has touch all of the higher layers of application programming, so instead of concentrating simply on the serialization format we conclude that improvements need to be made in an integrated fashion in all of these layers.
Resumo:
Of the many factors that govern the settling phenomenon, the flow velocity in the settling tanks can be controlled favorably by fixing suitably designed weirs at the outlets of the tanks. The velocity at the bottom should not dislodge the particles that have already settled. These requirements might be met with by velocities which are controlled to be constant with respect to the depth of flow, or velocities which reduce linearly with increasing depth or velocities that vary inversely with the depth. To achieve these types of velocity control, new proportional weirs have been designed. Very near to the outlet of the tank, over a small length, the flow was found to be turbulent and noncompliant with the expected type of velocity control. This small length of the disturbance may be provided over and above the theoretical settling length of the tank, for efficient sedimentation.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
We report the material and electrical properties of Erbium Oxide (Er2O3) thin films grown on n-Ge (100) by RF sputtering. The properties of the films are correlated with the processing conditions. The structural characterization reveals that the films annealed at 550 degrees C, has densified as compared to the as-grown ones. Fixed oxide charges and interface charges, both of the order of 10(13)/cm(2) is observed.