993 resultados para ELECTRODE-REACTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the study of the ethanol oxidation reaction of a Pt/C Etek electrocatalyst that was supported on different substrates, such as gold, glassy carbon and carbon cloth treated with PTFE. In the ethanol oxidation reaction, the activity varies with the substrate, as well as the pathways for ethanol oxidation, as studied by an ATR-FTIR in situ setup using the carbon cloth as the electrocatalyst support. The electrocatalyst Pt/C supported on gold starts acetaldehyde production from ethanol oxidation at an onset potential of 0.1 V less than that observed for the same process on Teflon-treated carbon cloth. The Pt/C supported on the carbon cloth starts its CO2 production for the same oxidation process at 0.2 V less than on the Pt/C supported on gold substrate. The differences in catalytic activity for the ethanol oxidation reaction depend not only on the electrocatalyst but also on various electrode factors, such as the substrate, the roughness of the electrode and the charge transfer resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid–liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L−1 was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L−1, which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L−1 and 1 µg L−1, respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L−1) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the decision by Australian Real Estate Trusts (A-REITs) to issue seasoned equity offerings from 2000 - 2008 and stock market reaction to the offerings using panel data and event study methodologies, respectively. The global financial crisis has resulted in freezing of the Australian bond markets, with several A-REITs left with seasoned equity issuance and asset sales as the only viable modes of raising additional capital. The findings review that leverage and operating risk are negative significant determinants of seasoned equity offerings; profitability and growth opportunities are positive significant determinants. Of the structure and type of properties held by the A-REIT, only stapled management structure and international operations are significant determinants. Type of properties held by A-REITs show inconsistent results. Similar to previous studies of seasoned equity offerings, we find a significant negative abnormal return associated with their announcement and no evidence of excessive leakage of information. Cross-sectional regressions show that the issued amount raised and leverage are significant factors affecting abnormal returns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The seemingly exponential nature of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the small and medium-sized enterprise a complex and challenging operational context. The development of infrastructures capable of supporting the Wireless Application Protocol (WAP)and associated 'wireless' applications represents the latest generation of technological innovation with potential appeal to SMEs and end-users alike. The primary aim of this research was to understand the mobile data technology needs of SMEs in a regional setting. The research was especially concerned with perceived needs across three market segments; non-adopters of new technology, partial-adopters of new technology and full-adopters of new technology. Working with an industry partner, focus groups were conducted with each of these segments with the discussions focused on the use of the latest WP products and services. Some of the results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-report measure of the emotional and behavioural reactions to intrusive thoughts was developed. The paper presents data that confirm the stability, reliability and validity of the new 7-item measure. Emotional and behavioural reactions to intrusions emerged as separate factors on the Emotional and Behavioural Reactions to Intrusions Questionnaire (EBRIQ), a finding confirmed by an independent stress study. Test retest reliability over 30-70 days was good. Expected relationships with other constructs were significant. Stronger negative responses to intrusions were associated with lower mindfulness scores and higher ratings of experiential avoidance, thought suppression and intensity and frequency of craving. The EBRIQ will help explore differences in reactions to intrusive thoughts in clinical and non clinical populations, and across different emotional and behavioural states. It will also be useful in assessing the effects of therapeutic approaches such as mindfulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce the Reaction Wheel Pendulum, a novel mechanical system consisting of a physical pendulum with a rotating bob. This system has several attractive features both from a pedagogical standpoint and from a research standpoint. From a pedagogical standpoint, the dynamics are the simplest among the various pendulum experiments available so that the system can be introduced to students earlier in their education. At the same time, the system is nonlinear and underactuated so that it can be used as a benchmark experiment to study recent advanced methodologies in nonlinear control, such as feedback linearization, passivity methods, backstepping and hybrid control. In this paper we discuss two control approaches for the problems of swingup and balance, namely, feedback linearization and passivity based control. We first show that the system is locally feedback linearizable by a local diffeomorphism in state space and nonlinear feedback. We compare the feedback linearization control with a linear pole-placement control for the problem of balancing the pendulum about the inverted position. For the swingup problem we discuss an energy approach based on collocated partial feedback linearization, and passivity of the resulting zero dynamics. A hybrid/switching control strategy is used to switch between the swingup and the balance control. Experimental results are presented.