979 resultados para EER SPECTRA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a theory for the tunneling conductance G(V) of Dirac electrons on the surface of a topological insulator as measured by a spin-polarized scanning tunneling microscope tip for low-bias voltages V. We show that if the in-plane rotational symmetry on the surface of the topological insulator is broken by an external field that does not couple to spin directly (such as an in-plane electric field), G(V) exhibits an unconventional dependence on the direction of the magnetization of the tip, i.e., it acquires a dependence on the azimuthal angle of the magnetization of the tip. We also show that G(V) can be used to measure the magnitude of the local out-of-plane spin orientation of the Dirac electrons on the surface. We explain the role of the Dirac electrons in this unconventional behavior and suggest experiments to test our theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the significant advancements in Nuclear Magnetic Resonance spectroscopy (NMR) in combating the problem of spectral complexity for deriving the structure and conformational information is the incorporation of additional dimension and to spread the information content in a two dimensional space. This approach together with the manipulation of the dynamics of nuclear spins permitted the designing of appropriate pulse sequences leading to the evolution of diverse multidimensional NMR experiments. The desired spectral information can now be extracted in a simplified and an orchestrated manner. The indirect detection of multiple quantum (MQ) NMR frequencies is a step in this direction. The MQ technique has been extensively used in the study of molecules aligned in liquid crystalline media to reduce spectral complexity and to determine molecular geometries. Unlike in dipolar coupled systems, the size of the network of scalar coupled spins is not big in isotropic solutions and the MQ 1H detection is not routinely employed,although there are specific examples of spin topology filtering. In this brief review, we discuss our recent studies on the development and application of multiple quantum correlation and resolved techniques for the analyses of proton NMR spectra of scalar coupled spins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3 ,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on OFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study reports a two dimensional NMR experiment which separates single quantum spectra of enantiomers from that of a racemic mixture. This is a blend of selective double quantum refocusing, for resolving couplings and chemical shift interactions along two dimensions followed by correlation of the selectively excited protons to the entire coupled spin network. The concept is solely based on the presence of distinct intra methyl dipolar couplings of different enantiomers when dissolved in chiral orienting media. The analysis of single enantiomer spectrum obtained from respective F-2 cross sections yield all the spectral information. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence study of Fermi-edge singularity (FES) in modulation-doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs quantum well (QW) heterostructures is presented. In the above QW structures the optical transitions between n = 1 and n = 2 electronic subband to the n = 1 heavy hole subband (E-11 and E-21 transitions, respectively) are observed with FES appearing as a lower energy shoulder to the E-21 transition. The observed FES is attributed to the Fermi wave vector in the first electronic subband under the conditions of population of the second electronic subband. The FES appears at about 10 meV below E-21 transition around 4.2 K. Initially it gets stronger with increasing temperature and becomes a distinct peak at about 20 K. Further increase in temperature quenches FES and reaches the base line at around 40 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (beta-L-malic acid) (PMLA) is a biodegradable polymer and it has various important applications in the biomedical field. In the present work the structural and spectral characteristics of PMLA have been studied by methods of infrared. Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) using oligomeric approach employing B3LYP with complete relaxation in the potential energy surface using 6-311++G (d, p) basis set. Based on results, we have discussed the correlation between the vibrational modes and the structure of the PMLA. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The calculated infrared and the Raman spectra of the polymer based on DFT calculations show reasonable agreement with the experimental results. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra of atmospherically and astronomically important dimethylphenanthrenes (DMPs), namely 1,9-DMP, 2,4-DMP, and 3,9-DMP, were recorded in the gas phase from 400 to 4000 cm(-1) with a resolution of 0.5 cm(-1) at 110 degrees C using a 7.2 m gas cell. DFT calculations at the B3LYP/6-311G** level were carried out to get the harmonic and anharmonic frequencies and their corresponding intensities for the assignment of the observed bands. However, spectral assignments could not be made unambiguously using anharmonic or selectively scaled harmonic frequencies. Therefore, the scaled quantum mechanical (SQM) force field analysis method was adopted to achieve more accurate assignments. In this method force fields instead of frequencies were scaled. The Cartesian force field matrix obtained from the Gaussian calculations was converted to a nonredundant local coordinate force field matrix and then the force fields were scaled to match experimental frequencies in a consistent manner using a modified version of the UMAT program of the QCPE package. Potential energy distributions (PEDs) of the normal modes in terms of nonredundant local coordinates obtained from these calculations helped us derive the nature of the vibration at each frequency. The intensity of observed bands in the experimental spectra was calculated using estimated vapor pressures of the DMPs. An error analysis of the mean deviation between experimental and calculated intensities reveal that the observed methyl C-H stretching intensity deviates more compared to the aromatic C-H and non C-H stretching bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fourier transform Raman and infrared (IR) spectra of the Ceramide 3 (CER3) have been recorded in the regions 200-3500 cm(-1) and 680-4000 cm(-1), respectively. We have calculated the equilibrium geometry, harmonic vibrational wavenumbers, electrostatic potential surfaces, absolute Raman scattering activities and IR absorption intensities by the density functional theory with B3LYP functionals having extended basis set 6-311G. This work is undertaken to study the vibrational spectra of CER3 completely and to identify the various normal modes with better wavenumber accuracy. Good consistency is found between the calculated results and experimental data for the IR and Raman spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The program SuSeFLAV is introduced for computing supersymmetric mass spectra with flavour violation in various supersymmetric breaking scenarios with/without see-saw mechanism. A short user guide summarizing the compilation, executables and the input files is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic plastic crystalline soft matter ion conductors are interesting alternatives to liquid electrolytes in electrochemical storage devices such as Lithium-ion batteries. The solvent dynamics plays a major role in determining the ion transport in plastic crystalline ion conductors. We present here an analysis of the frequency-dependent ionic conductivity of succinonitrile-based plastic crystalline ion conductors at varying salt composition (0.005 to 1 M) and temperature (-20 to 60 degrees C) using time-temperature superposition principle (TTSP). The main motivation of the work has been to establish comprehensive insight into the ion transport mechanism from a single method viz, impedance spectroscopy rather than employing cluster of different characterization methods probing various length and time scales. The TTSP remarkably aids in explicit identification of the extent of the roles of solvent dynamics and ion-ion interactions on the effective conductivity of the orientationally disordered plastic crystalline ion conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, variable temperature FT-IR spectroscopic investigations were used to characterize the spectral changes in oleic acid during heating oleic acid in the temperature range from -30 degrees;C to 22 degrees C. In order to extract more information about the spectral variations taking place during the phase transition process, 2D correlation spectroscopy (2DCOS) was employed for the stretching (C?O) and rocking (CH2) band of oleic acid. However, the interpretation of these spectral variations in the FT-IR spectra is not straightforward, because the absorption bands are heavily overlapped and change due to two processes: recrystallization of the ?-phase and melting of the oleic acid. Furthermore, the solid phase transition from the ?- to the a-phase was also observed between -4 degrees C and -2 degrees C. Thus, for a more detailed 2DCOS analysis, we have split up the spectral data set in the subsets recorded between -30 degrees C to -16 degrees C, -16 degrees C to 10 degrees C, and 10 degrees C to 22 degrees C. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands that are characteristic of the crystalline and amorphous regions of oleic acid were separated.