977 resultados para EEG-fMRI
Resumo:
Objective Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. Methods The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. Results In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. Interpretation PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.
Resumo:
Neural signatures of humans' movement intention can be exploited by future neuroprosthesis. We propose a method for detecting self-paced upper limb movement intention from brain signals acquired with both invasive and noninvasive methods. In the first study with scalp electroencephalograph (EEG) signals from healthy controls, we report single trial detection of movement intention using movement related potentials (MRPs) in a frequency range between 0.1 to 1 Hz. Movement intention can be detected above chance level (p<0.05) on average 460 ms before the movement onset with low detection rate during the on-movement intention period. Using intracranial EEG (iEEG) from one epileptic subject, we detect movement intention as early as 1500 ms before movement onset with accuracy above 90% using electrodes implanted in the bilateral supplementary motor area (SMA). The coherent results obtained with non-invasive and invasive method and its generalization capabilities across different days of recording, strengthened the theory that self-paced movement intention can be detected before movement initiation for the advancement in robot-assisted neurorehabilitation.
Resumo:
Background: Language processing abnormalities and inhibition difficulties are hallmark features of schizophrenia. The objective of this study is to asses the blood oxygenation level-dependent (BOLD) response at two different stages of the illness and compare the frontal activity between adolescents and adults with schizophrenia. Methods: 10 adults with schizophrenia (mean age 31,5 years) and 6 psychotic adolescents with schizophrenic symptoms (mean age 16,2 years) underwent functional magnetic resonance imaging while performing two frontal tasks. Regional activation is compared in the bilateral frontal areas during a covert verbal fluency task (letter version) and a Stroop task (inhibition task). Results: Preliminary results show poorer task performance and less frontal cortex activation during both tasks in the adult group of patients with schizophrenia. In the adolescent patients group, fMRI analysis show significant and larger activity in the left frontal operculum (Broca's area) in the verbal fluency task and greater activity in the medium cingulate during the inhibition phase of the Stroop task. Conclusions: These preliminary findings suggest a decrease of frontal activity in the course of the illness. We assume that schizophrenia contributes to frontal brain activity reduction.
Resumo:
BACKGROUND: Reactive electroencephalography (EEG) background during therapeutic hypothermia (TH) is related to favorable prognosis after cardiac arrest (CA), but its predictive value is not 100 %. The aim of this study was to investigate outcome predictors after a first reactive EEG recorded during TH after CA. METHODS: We studied a cohort of consecutive comatose adults admitted between February 2008 and November 2012, after successful resuscitation from CA, selecting patients with reactive EEG during TH. Outcome was assessed at three months, and categorized as survivors and non-survivors (no patient was in vegetative state). Demographics, clinical variables, EEG features, serum neuron-specific enolase (NSE) and procalcitonin, were compared using uni- and multivariable analyses. RESULTS: A total of 290 patients were treated with TH after cardiac arrest; 146 had an EEG during TH, which proved reactive in 90 of them; 77 (86 %) survived and 13 (14 %) died (without recovery from coma). The group of non-survivors had a higher occurrence of discontinuous EEG (p = 0.006; multivariate analysis p = 0.026), and a higher serum NSE peak (p = 0.021; multivariate analysis p = 0.014); conversely, demographics, and other clinical variables including serum procalcitonin did not differ. CONCLUSIONS: A discontinuous EEG and high serum NSE are associated with mortality after CA in patients with poor outcome despite a reactive hypothermic EEG. This suggests more severe cerebral damage, but not to higher extent of systemic disease.
Resumo:
STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.
Resumo:
Visual analysis of electroencephalography (EEG) background and reactivity during therapeutic hypothermia provides important outcome information, but is time-consuming and not always consistent between reviewers. Automated EEG analysis may help quantify the brain damage. Forty-six comatose patients in therapeutic hypothermia, after cardiac arrest, were included in the study. EEG background was quantified with burst-suppression ratio (BSR) and approximate entropy, both used to monitor anesthesia. Reactivity was detected through change in the power spectrum of signal before and after stimulation. Automatic results obtained almost perfect agreement (discontinuity) to substantial agreement (background reactivity) with a visual score from EEG-certified neurologists. Burst-suppression ratio was more suited to distinguish continuous EEG background from burst-suppression than approximate entropy in this specific population. Automatic EEG background and reactivity measures were significantly related to good and poor outcome. We conclude that quantitative EEG measurements can provide promising information regarding current state of the patient and clinical outcome, but further work is needed before routine application in a clinical setting.
Resumo:
Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.
Resumo:
Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of participants used a cue word to recall its associate from a prior study phase, with those in an incidental test, in which a different group of participants used the same cue to produce the first associate that came to mind. Both semantic relative to phonemic processing at study, and emotional relative to neutral word pairs, increased target completions in the intentional test, but not in the incidental test, suggesting that behavioral performance in the incidental test was not contaminated by voluntary explicit retrieval. We isolated the neural correlates of successful retrieval by contrasting fMRI responses to studied versus unstudied cues for which the equivalent "target" associate was produced. By comparing the difference in this repetition-related contrast across the intentional and incidental tests, we could identify the correlates of voluntary explicit retrieval. This contrast revealed increased bilateral hippocampal responses in the intentional test, but decreased hippocampal responses in the incidental test. A similar pattern in the bilateral amygdale was further modulated by the emotionality of the word pairs, although surprisingly only in the incidental test. Parietal regions, however, showed increased repetition-related responses in both tests. These results suggest that the neural correlates of successful voluntary explicit memory differ in directionality, even if not in location, from the neural correlates of successful involuntary implicit (or explicit) memory, even when the incidental test taps conceptual processes.
Resumo:
Evidence from human and non-human primate studies supports a dual-pathway model of audition, with partially segregated cortical networks for sound recognition and sound localisation, referred to as the What and Where processing streams. In normal subjects, these two networks overlap partially on the supra-temporal plane, suggesting that some early-stage auditory areas are involved in processing of either auditory feature alone or of both. Using high-resolution 7-T fMRI we have investigated the influence of positional information on sound object representations by comparing activation patterns to environmental sounds lateralised to the right or left ear. While unilaterally presented sounds induced bilateral activation, small clusters in specific non-primary auditory areas were significantly more activated by contra-laterally presented stimuli. Comparison of these data with histologically identified non-primary auditory areas suggests that the coding of sound objects within early-stage auditory areas lateral and posterior to primary auditory cortex AI is modulated by the position of the sound, while that within anterior areas is not.
Resumo:
The interhemispheric asymmetries that originate from connectivity-related structuring of the cortex are compromised in schizophrenia (SZ). Under the assumption that such abnormalities affect functional connectivity, we analyzed its correlate-EEG synchronization-in SZ patients and matched controls. We applied multivariate synchronization measures based on Laplacian EEG and tuned to various spatial scales. Compared to the controls who had rightward asymmetry at a local level (EEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (1st and 2nd order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization in the alpha and beta bands. The abnormalities of asymmetry increased with the duration of the disease and correlated with the negative symptoms. We discuss the tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern, in normal subjects and SZ patients.
Resumo:
Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis à vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subject's behavior and cognitive states, and the discrimination between healthy and clinical populations.
Resumo:
Limbic encephalitis (LE) with waxing and waning neuropsychiatric manifestations including behavioral, personality, psychiatric, and memory changes can evolve over days to months. Many features of LE show remarkable overlap with the characteristics of mesial-temporal (limbic) status epilepticus (MTLSE or LSE). With LE, these prolonged impaired states are assumed not to be due to ongoing epileptic activity or MTLSE, because scalp EEGs usually show no epileptiform spike-wave activity; cycling behavioral and motor changes are attributed to LE; there may be little immediate improvement with antiepileptic drugs (AEDs); and of course, implanted electrodes are rarely used. Conversely, it is known that in pre-surgical patients with refractory limbic epilepsy, implanted electrodes have revealed limbic seizures that cannot be seen at the scalp. This paper assembles a chain of inferences to advance the proposition that refractory LE might represent LSE more often than is thought, and that implanted electrodes should be considered in some cases. We present two cases that suggest that LE was also LSE, one of which warranted implanted electrodes (case 1).
Resumo:
We present a novel approach for analyzing single-trial electroencephalography (EEG) data, using topographic information. The method allows for visualizing event-related potentials using all the electrodes of recordings overcoming the problem of previous approaches that required electrode selection and waveforms filtering. We apply this method to EEG data from an auditory object recognition experiment that we have previously analyzed at an ERP level. Temporally structured periods were statistically identified wherein a given topography predominated without any prior information about the temporal behavior. In addition to providing novel methods for EEG analysis, the data indicate that ERPs are reliably observable at a single-trial level when examined topographically.
Resumo:
Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.