938 resultados para ECOLOGICAL STUDIES
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
Resumo:
Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.
Resumo:
Ecological studies were conducted in the ichthyofauna of Cedro, a small headwater stream located in a degraded area of State of São Paulo, Brazil, situated in the upper Paraná River basin. These are the results of two non-consecutive years observations and collections in two biotopes of that stream: a pool and a rapid. The ecological characteristics studied change in space and time. The present richness of species is high (21 species), nine of which are constant, six accessory and six accidental. The diversity is low (0.69 to 2.38), and the numeric predominance, from one to three species, occurred in both biotopes. The most frequent species are Poecilia reticulata (Peters, 1859) (28.1%), Corydoras cf. aeneus (Gill, 1858) (20.3%) and Hypostomus cf. ancistroides (Ihering, 1911) (19.8%). The density ranges from 0.7 to 19.8 specimens/m³. The similarity index indicates high similarity between the ichthyofauna (45.0% to 95.0%) inside the same or contiguous biotopes. The evenness (0.46 to 1.0) is comparable to those found in similar studies carried out in other streams.
Resumo:
Geophysical surveying and geoelectricalmethods are effective to study permafrost distribution and conditions in polar environments. Geoelectrical methods are particularly suited to study the spatial distribution of permafrost because of its high electrical resistivity in comparison with that of soil or rock above 0 °C. In the South Shetland Islands permafrost is considered to be discontinuous up to elevations of 20–40ma.s.l., changing to continuous at higher altitudes. There are no specific data about the distribution of permafrost in Byers Peninsula, in Livingston Island, which is the largest ice-free area in the South Shetland Islands. With the purpose of better understanding the occurrence of permanent frozen conditions in this area, a geophysical survey using an electrical resistivity tomography (ERT)methodologywas conducted during the January 2015 field season, combined with geomorphological and ecological studies. Three overlapping electrical resistivity tomographies of 78meach were done along the same profile which ran from the coast to the highest raised beaches. The three electrical resistivity tomographies are combined in an electrical resistivitymodel which represents the distribution of the electrical resistivity of the ground to depths of about 13malong 158m. Several patches of high electrical resistivity were found, and interpreted as patches of sporadic permafrost. The lower limits of sporadic to discontinuous permafrost in the area are confirmed by the presence of permafrost-related landforms nearby. There is a close correspondence between moss patches and permafrost patches along the geoelectrical transect.
Resumo:
La danta centroamericana (Tapirus bairdii) es el mamífero terrestre de mayor tamaño en el Neotrópico. Es un importante dispersor de semillas que contribuye al enriquecimiento de especies en los bosques donde habita. Varios estudios ecológicos han permitido conocer esta especie discreta; sin embargo, su distribución y el tamaño de sus poblaciones permanece sensiblemente desconocido fuera de las áreas silvestres protegidas. El propósito de esta investigación consistió en proponer una metodología de análisis geo-espacial sencilla que permitiera realizar una evaluación rápida del hábitat potencial para la danta centroamericana. Se seleccionaron siete variables de la ecología de la danta centroamericana, las cuales fueron evaluadas en el Corredor Biológico San Juan-La Selva, mediante un sistema de información geográfica (SIG). Estimamos la población de dantas con un rango de 69 a 208 individuos. Esto es una manera barata de determinar la viabilidad del hábitat de la danta cuando existe información confiable sobre los procesos dinámicos de los ecosistemas presentes en el área del estudio.Palabras clave: Tapiridae, danta centroamericana, Tapirus bairdii, evaluación de hábitat, analisis geo-espacial, Corredor Biológico San Juan-La Selva, Costa RicaAbstract: Baird’s Tapir (Tapirus bairdii) is the largest terrestrial mammal in the Neotropics. It is an important seed disperser that contributes to the enrichment of species in the forests where it lives. Several ecological studies on this species have generated knowledge about this discreet species; nevertheless, its distribution and the size of its populations outside protected wildlife areas sensibly remain unknown. The purpose of this investigation consisted in proposing a simple methodology of geo-space analysis that allowed realizing a fast evaluation of the potential habitat for Baird’s Tapir. Seven variables of the ecology of Baird’s Tapir were selected, which were evaluated in the San Juan-La Selva Biological Corridor, using a geographical information system (GIS) program. We estimated the tapir population to range from 69 to 208 individuals. This is an inexpensive way to assess Tapir’s habitat viability when there is a strong knowledge about the dynamic processes from the ecosystems present in the study area.Key Words: Tapiridae, Baird’s Tapir, Tapirus bairdii, habitat viability assessment, geo-spatial analysis, San Juan-La Selva Biological Corridor, Costa Rica
Resumo:
The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.
Resumo:
Since the inception of the LTER Program in 1980, climate has been studied at individual LTER sites and an LTER Climate Committee has been responsible for inter-site activities. At individual sites, climate studies support ecological research, emphasize inter-site heterogeneity, and often relate to other national monitoring and research programs. In inter-site work, the Climate Committee has produced protocols for meteorological observations, described and compared climates of the first 11 sites, and raised important issues regarding climate variability and ecosystem response.
Resumo:
Long-term hydrologic studies in the Arctic simply do not exist. Although the Arctic has been identified as an area that is extremely sensitive to climate change, continuous scientific research has been limited to the past seven years. Earlier research was spotty, of short duration, and directed at only one or two hydrologic elements. Immediate future research needs to encompass all the major hydrologic elements, including winter processes, and needs to address the problem of scaling from small to larger areas in hydrologic models. Also, an international program of cooperation between northern countries is needed to build a greater scientific base for monitoring and identifying potential changes wrought by the climate.
Resumo:
Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
Geo-ecological transect studies in the pastures of the upper catchment of the HuangHe (99 degrees 30'-100 degrees 00'E/35 degrees 30'-35 degrees 40'N'; 3,000-4,000 in a.s.l., Qinghai province, China) revealed evidence that pastures replace forests. Plot-based vegetation records and fenced grazing exclosure experiments enabled the identification of grazing indicator plants for the first time. The mapping of vegetation patterns of pastures with isolated juniper and Spruce forests raise questions as to the origin of the grasslands, which arc widely classified as "natural" at present. Soil investigations and charcoal fragments of Juniperus (8,153 +/- 63 uncal BP) and Picea (6,665 +/- 59 uncal BP) provide evidence of the wider presence of forests. As temperatures and rainfall records undoubtedly represent a forest climate, it is assumed that the present pastures have replaced forests. Circumstantial evidence arising from investigations into the environmental history of the Holocene effectively substantiates this theory.
Resumo:
Nematodes from a mud-flat in the river Lynher estuary, Cornwall, U.K., have a population density ranging between 8 and 9 × 106 m−2 in the winter months, corresponding to a dry weight of 1·4 and 1·6 g m−2. They reach a peak abundance of 22·86 × 106 m−2 (3·4 g) in May. About 40 species are present, and the species composition remained seasonally stable over the period of study. Analysis of age-structure suggests that the major species have continuous asynchronous reproduction. Respiration rates of 16 species have been determined at 20 °C using Cartesian diver respirometry. For five species, respiration/body size regressions were obtained in the form log10R = log10a+b log10V, where R = respiration in nl O2 ind−1 h−1 and V = body volume in nl: Mesotheristus setosus (log10a = −0·04,b = 0·74), Sphaerolaimus hirsutus (log10a = 0·11, b = 0·68), Axonolaimus paraspinosus (log10a = 0·00, b = 0·79), Metachromadora vivipara (log10a = −0·59, b = 1·07), Praeacanthonchus punctatus (log10a = 0·00, b = 0·55). For the remaining 11 species, several animals were used in each diver and, by assuming b = 0·75, log10a′ values were calculated: Viscosia viscosa (log10a′ = 0·188), Innocuonema tentabundum (−0·012), Ptycholaimellus ponticus (−0·081), Odontophora setosa (−0·092), Sphaerolaimus balticus (−0·112), Dichromadora cephalata (−0·133), Atrochromadora microlaima (−0·142), Cylindrotheristus normandicus (−0·150), Terschellingialongicaudata (−0·170), Sabatieria pulchra (−0·197), Terschellingia communis (−0·277). These values are compared with recalculated values for other species from the literature. Annual respiration of the nematode community is 28·01 O2 m−2, equivalent to 11·2 g carbon metabolised. Community respiration is compared with figures from N. American saltmarshes. At 20 °C, a respiration of about 61 O2 m−2 year−1 g−1 wet weight of nematodes appears to be typical. Annual production is estimated to be 6·6 g C m−2. The correlation between feeding-group, body-size, habitat and the repiration rate of individual species is discussed.
Resumo:
The main objectives of the present investigation were to evaluate the qualitative and quantitative distribution of natural cyanobacterial population and their ecobiological properties along the Cochin estuary and their application in aquaculture systems as a nutritional supplement due to their nutrient-rich biochemical composition and antioxidant potential. This thesis presents a detailed account of the distribution of cyanobacteria in Cochin estuary, an assessment of physico-chemical parameters and the nutrients of the study site, an evaluation of the effect of physico-chemical parameters on cyanobacterial distribution and abundance, isolation, identification and culturing of cyanobacteria, the biochemical composition an productivity of cyanobacteria, and an evaluation of the potential of the selected cyanobacteria as antioxidants against ethanol induced lipid peroxidation. The pH, salinity and nutritional requirements were optimized for low-cost production of the selected cyanobacterial strains. The present study provides an insight into the distribution, abundance, diversity and ecology of cyanobacteria of Cochin estuary. From the results, it is evident that the ecological conditions of Cochin estuary support a rich cyanobacterial growth.
Resumo:
Documenting the presence and abundance of the neotropical mammals is the first step for understanding their population ecology, behavior and genetic dynamics in designing conservation plans. The combination of field research with molecular genetics techniques are new tools that provide valuable biological information avoiding the disturbance in the ecosystems, trying to minimize the human impact in the process to gather biological information. The objective of this paper is to review the available non invasive sampling techniques that have been used in Neotropical mammal studies to apply to determine the presence and abundance, population structure, sex ratio, taxonomic diagnostic using mitochondrial markers, and assessing genetic variability using nuclear markers. There are a wide range of non invasive sampling techniques used to determine the species identification that inhabit an area such as searching for tracks, feces, and carcasses. Other useful equipment is the camera traps that can generate an image bank that can be valuable to assess species presence and abundance by morphology. With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in feces and amplify it to analyze the species diversity in an area, and the genetic variability at intraspecific level. This is particularly helpful in cases of sympatric and cryptic species in which morphology failed to diagnose the taxonomic status of several species of brocket deer of the genus Mazama.