224 resultados para EAE
Resumo:
CYLD is a deubiquitinating enzyme, which negatively regulates NF-κB signaling by removing Lys63-linked polyubiquitin chains from its substrates. In mice, there are two variants of CYLD: full-length CYLD (FL-CYLD) and its short splice variant sCYLD. sCYLD lacks the NEMO and TRAF2 binding sites and CYLDex7/8 mice, which have been generated in our laboratory, overexpress sCYLD in the absence of the full length transcript. In this thesis, we show that bone marrow-derived macrophages (BMDCs) overexpressing sCYLD display a hyperactive phenotype. They have increased levels of the inflammatory cytokines IL-6 and TNFα, have exaggerated stimulatory capacity and fail to induce tolerance in in vivo experiments. CYLDex7/8 BMDCs have increased levels of nuclear Bcl-3, which we could show to be directly induced by sCYLD expression. NF-κB signaling was markedly upregulated in CYLDex7/8 BMDCs.rnBcl-3 overexpressing BMDCs with normal CYLD expression, however, were not hyperactive, suggesting that Bcl-3 overexpression is not sufficient for causing the observed phenotype. Taken together we propose a model in which the exclusive overexpression of sCYLD with high nuclear levels of Bcl-3 in BMDCs is accompanied by an increased NF-κB activation, resulting in a hyperactive phenotype.rnWe further analyzed macrophages overexpressing sCYLD using the LysMcre CyldFL/FL strain, but could not detect differences in activation marker expression, cytokine secretion or iNOS production. LysMcre CyldFL/FL mice immunized with MOG35-55 peptide showed a more severe course of experimental autoimmune encephalomyelitis (EAE), which could not be explained by enhanced levels of MHC class II on CNS-resident macrophages and microglia or increased T cell infiltration.rnMice overexpressing Bcl-3 in T cells develop spontaneous colitis. They have less peripheral memory/effector T cells and less Th1 cells, whereas Th17 numbers are normal. Naïve T cells overexpressing Bcl-3 show defects in in vitro differentiation to the Th1 or Th17 fate. CD4+ T cells overexpressing Bcl-3 show enhanced survival capacity in in vitro culture, but have a defect in proliferative capacity when stimulated in vitro or when adoptively transferred into lymphopenic hosts.
Resumo:
Inflammation-mediated neurodegeneration occurs in the acute and the chronic/progressive phases of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Classically-activated microglia (M1) are key players mediating this process through secretion of soluble factors including nitric oxide (NO) and tumor necrosis factor (TNF). Here, galectin-1, an endogenous glycan-binding protein, was identified as a pivotal regulatory mechanism that limits M1 microglia activation and neurodegeneration, by targeting the activation of p38MAPK- and CREB-dependent pathways and hierarchically controlling downstream pro-inflammatory mediators such as iNOS, TNF and CCL2. Galectin-1 is highly expressed in the acute phase of EAE and its targeted deletion results in pronounced inflammation-induced neurodegeneration. These findings identify an essential role of galectin-1-glycan lattices in tempering microglia activation, brain inflammation and neurodegeneration with critical therapeutic implications in relapsing-remitting and secondary progressive MS.rnMicroglia with distinct phenotypes are implicated in neurotoxicity, neuroprotection, and in modulation of endogenous repair by NSCs. However the precise molecular mechanisms underlying this diversity in fuction are still unknown. rnUsing a model of EAE, transcriptional profiling of isolated SVZ microglia from the acute and chronic disease phases of EAE was performed. The results from this study suggest that microglia exhibit disease phase specific gene expression signatures, that correspond to unique GO functions and genomic networks. These data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that support their role as mediators of injury or repair.
Resumo:
This thesis focuses on different aspects of immune regulation, both at the cellular and molecular levels. More specifically, this work concentrates on the importance of Interleukin-10, B and T Lymphocyte Attenuator (BTLA), and dendritic cells in respect to immune regulation, with special emphasis on autoimmunity. In this thesis, we show that the cellular source of IL10 production can dramatically influence the outcome of an autoimmune response. We show that T cell-derived IL10 plays an important role in controlling the viability of recently activated T cells, allowing them to become fully functional T effector cells. T cell-specific IL10-deficient mice failed to induce EAE when immunized with MOG peptide. Furthermore, when re-challenged with MOG or other stimuli, these T cells exhibited increased apoptosis rates. Here we report for the first time the generation of a novel mouse model that allows the conditional over-expression of BTLA. We show that BTLA can negatively regulate CD4+ T cells responses, when expressed by the T cells themselves. BTLA over-expression by CD8+ T cells or dendritic cells, however, resulted in enhanced viral clearance. In this study, we show that depletion of DCs, either early on from birth or later in adulthood, does not prevent EAE induction, but instead leads to a lower state of tolerance and stronger immune response. We also show that DCs are responsible for the upregulation of PD-1 on antigen-specific T cells and subsequently induce the formation of Tregs during immune responses.
Resumo:
Glioblastoma multiforme (GBM) is the most common and most aggressive astrocytic tumor of the central nervous system (CNS) in adults. The standard treatment consisting of surgery, followed by a combinatorial radio- and chemotherapy, is only palliative and prolongs patient median survival to 12 to 15 months. The tumor subpopulation of stem cell-like glioma-initiating cells (GICs) shows resistance against radiation as well as chemotherapy, and has been suggested to be responsible for relapses of more aggressive tumors after therapy. The efficacy of immunotherapies, which exploit the immune system to specifically recognize and eliminate malignant cells, is limited due to strong immunosuppressive activities of the GICs and the generation of a specialized protective microenvironment. The molecular mechanisms underlying the therapy resistance of GICs are largely unknown. rnThe first aim of this study was to identify immune evasion mechanisms in GICs triggered by radiation. A model was used in which patient-derived GICs were treated in vitro with fractionated ionizing radiation (2.5 Gy in 7 consecutive passages) to select for a more radio-resistant phenotype. In the model cell line 1080, this selection process resulted in increased proliferative but diminished migratory capacities in comparison to untreated control GICs. Furthermore, radio-selected GICs downregulated various proteins involved in antigen processing and presentation, resulting in decreased expression of MHC class I molecules on the cellular surface and diminished recognition potential by cytotoxic CD8+ T cells. Thus, sub-lethal fractionated radiation can promote immune evasion and hamper the success of adjuvant immunotherapy. Among several immune-associated proteins, interferon-induced transmembrane protein 3 (IFITM3) was found to be upregulated in radio-selected GICs. While high expression of IFITM3 was associated with a worse overall survival of GBM patients (TCGA database) and increased proliferation and migration of differentiated glioma cell lines, a strong contribution of IFITM3 to proliferation in vitro as well as tumor growth and invasiveness in a xenograft model could not be observed. rnMultiple sclerosis (MS) is the most common autoimmune disease of the CNS in young adults of the Western World, which leads to progressive disability in genetically susceptible individuals, possibly triggered by environmental factors. It is assumed that self-reactive, myelin-specific T helper cell 1 (Th1) and Th17 cells, which have escaped the control mechanisms of the immune system, are critical in the pathogenesis of the human disease and its animal model experimental autoimmune encephalomyelitis (EAE). It was observed that in vitro differentiated interleukin 17 (IL-17) producing Th17 cells co-expressed the Th1-phenotypic cytokine Interferon-gamma (IFN-γ) in combination with the two respective lineage-associated transcription factors RORγt and T-bet after re-isolation from the CNS of diseased mice. Pathogenic molecular mechanisms that render a CD4+ T cell encephalitogenic have scarcely been investigated up to date. rnIn the second part of the thesis, whole transcriptional changes occurring in in vitro differentiated Th17 cells in the course of EAE were analyzed. Evaluation of signaling networks revealed an overrepresentation of genes involved in communication between the innate and adaptive immune system and metabolic alterations including cholesterol biosynthesis. The transcription factors Cebpa, Fos, Klf4, Nfatc1 and Spi1, associated with thymocyte development and naïve T cells were upregulated in encephalitogenic CNS-isolated CD4+ T cells, proposing a contribution to T cell plasticity. Correlation of the murine T-cell gene expression dataset to putative MS risk genes, which were selected based on their proximity (± 500 kb; ensembl database, release 75) to the MS risk single nucleotide polymorphisms (SNPs) proposed by the most recent multiple sclerosis GWAS in 2011, revealed that 67.3% of the MS risk genes were differentially expressed in EAE. Expression patterns of Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7, and Thada were confirmed in independent experiments, suggesting a contribution to T cell pathogenicity. Functional analysis of Nfatc1 revealed that Nfatc1-deficient CD4+ T cells were restrained in their ability to induce clinical signs of EAE. Nfatc1-deficiency allowed proper T cell activation, but diminished their potential to fully differentiate into Th17 cells and to express high amounts of lineage cytokines. As the inducible Nfatc1/αA transcript is distinct from the other family members, it could represent an interesting target for therapeutic intervention in MS.rn
Resumo:
Dendritische Zellen (DC) spielen als professionelle antigenpräsentierende Zellen (APC) eine zentrale Rolle in der Aktivierung und Regulierung antigenspezifischer Immunantworten. Aus diesem Grund wird der therapeutische Einsatz von DC zur Behandlung von Autoimmunerkrankungen und Allergien sowie zur Tumorbekämpfung erforscht. Im ersten Teil der vorliegenden Arbeit untersuchten wir das Potenzial einer biolistischen DNA-Vakzinierung zur Induktion tolerogener DC in vivo. Im Tiermodell der Myelin-Oligodendrozyten-Glykoprotein Peptid 35-55 (MOGp35-55) induzierten experimentellen autoimmunen Enzephalomyelitis (EAE) sollte mittels präventiver biolistischer Kovakzinierung von Plasmid-DNA kodierend für MOG und die immunregulatorischen Zytokine TGFβ oder IL-10 eine protektive Immunität induziert werden. Die MOG-Expression stand dabei entweder unter der Kontrolle des ubiquitär aktiven CMV-Promotors oder des murinen Fascin-Promotors, um eine ektopische MOG-Expression spezifisch in dermalen DC und Langerhanszellen zu erreichen. Dass MOGp35-55-präsentierende DC nach biolistischer DNA-Vakzinierung von der Haut in die drainierenden Lymphknoten migrieren und dort T-Zellen aktivieren, konnte im Vorfeld anhand einer substanziellen Proliferation von MOGp35-55-reaktiven 2D2 T-Zellen nachgewiesen werden. Im präventiven Ansatz der MOGp35-55-induzierten EAE zeigten Mäuse, die mit MOG-kodierenden Plasmiden biolistisch transfiziert wurden, eine leicht reduzierte EAE-Symptomatik. Die Kotransfektion von MOG und TGFβ führte zu einer Verstärkung der EAE-Suppression – unabhängig davon, ob die MOG-Expression unter der Kontrolle des CMV- oder des Fascin-Promotors stand. Interessanterweise resultierte die Koapplikation von MOG- und IL-10-kodierender Plasmid-DNA nur bei DC-fokussierter MOG-Expression zu reduzierter EAE-Symptomatik. Für biolistische DNA-Vakzinierungen stellt somit der Fascin-Promotor eine potente Alternative zu viralen Promotoren dar. Entsprechend der milderen EAE-Symptome beobachteten wir bei behandelten EAE-Mäusen einen geringeren Grad an Demyelinisierung sowie eine reduzierte Infiltration des ZNS mit IFNγ-produzierenden CD4+ Th1- und IL-17-produzierenden CD4+ Th17-Zellen. Desweiteren zeigten Milzzellen ex vivo nach MOGp35-55-Restimulation eine inhibierte Proliferation und eine signifikant reduzierte IFNγ- und IL-17-Zytokinproduktion. Überraschenderweise ging die antigenspezifische Immunsuppression nicht mit der Expansion von Foxp3+ regulatorischen T-Zellen einher. Da die Milzen aber erhöhte Mengen an CD8+IFNγ+ T-Zellen aufweisen, könnte ein zytotoxisch-suppressiver Mechanismus für die Inhibition der Th1- und Th17-Immunantwort verantwortlich sein. Nachfolgende Untersuchungen sind notwendig, um die induzierten immunologischen Mechansimen mittels biolistischer DNA-Vakzinierung aufzuklären. Der zweite Teil der Arbeit befasst sich mit der Generierung von tolerogenen DC in vitro. Dafür wurden murine Knochenmarkszellen unter DC-differenzierenden Bedingungen in Gegenwart des synthetischen Glucocorticoids Dexamethason (DEX) kultiviert. Die DEX-Zugabe führte zur Differenzierung von APC mit geringer CD11c-Expression. DEX-APC waren in vitro weitestgehend gegen LPS stimulierungsresistent und zeigten eine reduzierte Expression von MHC-II und den kostimulatorischen Molekülen CD80, CD86 und CD40. Ihrem tolerogenen Phänotyp entsprechend besaßen DEX-APC ein geringeres syngenes T-Zellstimulierungspotenzial als unbehandelte BM-DC. Anhand der erhöhten Oberflächenexpression von CD11b, GR1 und F4/80 besteht eine phänotypische Ähnlichkeit zu myeloiden Suppressorzellen. Die Fähigkeit von DEX-APC in vivo antigenspezifische Toleranz zu induzieren, wurde durch einen therapeutischen Ansatz im murinen Krankheitsmodell der Kontaktallergie überprüft. Die therapeutische Applikation von DEX-APC führte hierbei im Vergleich zur Applikation von PBS oder unbehandelten BM-DC zu einer signifikant reduzierten Ohrschwellungsreaktion. Zusammenfassend demonstrieren die Ergebnisse dieser Arbeit, dass potente tolerogene DC sowohl in vivo als auch in vitro induziert werden können. Dass diese Zellpopulation effektiv antigenspezifische Immunreaktionen supprimieren kann, macht sie zu einem vielversprechenden Werkzeug in der Behandlung von Autoimmunerkrankungen und Allergien.rn
Resumo:
Dendritic cells (DCs) within the CNS are recognized to play an important role in the effector phase and propagation of the immune response in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. However, the mechanisms regulating DC trafficking into the CNS still need to be characterized. In this study, we show by performing intravital fluorescence videomicroscopy of the inflamed spinal cord white-matter microvasculature in SJL mice with EAE that immature, and to a lesser extent, LPS-matured, bone marrow-derived DCs efficiently interact with the CNS endothelium by rolling, capturing, and firm adhesion. Immature but not LPS-matured DCs efficiently migrated across the wall of inflamed parenchymal microvessels into the CNS. Blocking alpha4 integrins interfered with the adhesion but not the rolling or capturing of immature and LPS-matured DCs to the CNS microvascular endothelium, inhibiting their migration across the vascular wall. Functional absence of beta1 integrins but not of beta7 integrins or alpha4beta7 integrin similarly reduced the adhesion of immature DCs to the CNS microvascular endothelium, demonstrating that alpha4beta1 but not alpha4beta7 integrin mediates this step of immature DCs interaction with the inflamed blood-brain barrier during EAE. Our study shows that during EAE, especially immature DCs migrate into the CNS, where they may be crucial for the perpetuation of the CNS-targeted autoimmune response. Thus therapeutic targeting of alpha4 integrins affects DC trafficking into the CNS and may therefore lead to the resolution of the CNS autoimmune inflammation by reducing the number of CNS professional APCs.
Resumo:
The adhesion molecule P-selectin glycoprotein ligand (PSGL)-1 has been suggested to be involved in the immunopathogenesis of multiple sclerosis (MS). However, in C57BL/6 mice PSGL-1 was found to be dispensible for the development of MOG(aa35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model for MS. To study, if involvement of PSGL-1 to EAE pathogenesis can be observed in another common mouse model, we backcrossed PSGL-1(-/-) mice for at least 12 generations into the SJL/J background and compared PLP(aa139-151) induced EAE in PSGL-1(-/-) SJL/J mice versus wild-type SJL/J mice. Here, we demonstrate that PSGL-1(-/-) SJL/J mice exhibited EAE pathogenesis indistinguishable from wild-type SJL/J mice. Our present study underscores and emphasizes previous observations that PSGL-1 is dispensible for EAE pathogenesis.
Resumo:
Sex hormones influence immune responses and the development of autoimmune diseases including MS and its animal model, EAE. Although it has been previously reported that ovariectomy could worsen EAE, the mechanisms implicated in the protective action of endogenous ovarian hormones have not been addressed. In this report, we now show that endogenous estrogens limit EAE development and CNS inflammation in adult female mice through estrogen receptor expression in the host non-hematopoietic tissues. We provide evidence that the enhancing effect of gonadectomy on EAE development was due to quantitative rather than qualitative changes in effector Th1 or Th17 cell recruitment into the CNS. Consistent with this observation, adoptive transfer of myelin oligodendrocyte glycoprotein-specific encephalitogenic CD4(+) T lymphocytes induced more severe EAE in ovariectomized mice as compared to normal female mice. Finally, we show that gonadectomy accelerated the early recruitment of inflammatory cells into the CNS upon adoptive transfer of encephalitogenic CD4(+) T cells. Altogether, these data show that endogenous estrogens, through estrogen receptor , exert a protective effect on EAE by limiting the recruitment of blood-derived inflammatory cells into the CNS.
Resumo:
Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.
Resumo:
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.
Resumo:
Inhibiting the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the mab natalizumab is an effective treatment of multiple sclerosis (MS). Which of the two α4 heterodimers is involved in disease pathogenesis has, however, remained controversial. Whereas the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, is ameliorated in β7-integrin-deficient C57BL/6 mice, neutralizing antibodies against the β7-integrin subunit or the α4β7-integrin heterodimer fail to interfere with EAE pathogenesis in the SJL mouse. To facilitate α4β7-integrin-mediated immune-cell trafficking across the blood-brain barrier (BBB), we established transgenic C57BL/6 mice with endothelial cell-specific, inducible expression of the α4β7-integrin ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 using the tetracycline (TET)-OFF system. Although TET-regulated MAdCAM-1 induced α4β7-integrin mediated interaction of α4β7(+) /α4β1(-) T cells with the BBB in vitro and in vivo, it failed to influence EAE pathogenesis in C57BL/6 mice. TET-regulated MAdCAM-1 on the BBB neither changed the localization of central nervous system (CNS) perivascular inflammatory cuffs nor did it enhance the percentage of α4β7-integrin(+) inflammatory cells within the CNS during EAE. In conclusion, our study demonstrates that ectopic expression of MAdCAM-1 at the BBB does not increase α4β7-integrin-mediated immune cell trafficking into the CNS during MOG(aa35-55)-induced EAE.
Resumo:
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.
Resumo:
In the healthy individuum lymphocyte traffic into the central nervous system (CNS) is very low and tightly controlled by the highly specialized blood-brain barrier (BBB). In contrast, under inflammatory conditions of the CNS such as in multiple sclerosis or in its animal model experimental autoimmune encephalomyelitis (EAE) circulating lymphocytes and monocytes/macrophages readily cross the BBB and gain access to the CNS leading to edema, inflammation and demyelination. Interaction of circulating leukocytes with the endothelium of the blood-spinal cord and blood-brain barrier therefore is a critical step in the pathogenesis of inflammatory diseases of the CNS. Leukocyte/endothelial interactions are mediated by adhesion molecules and chemokines and their respective chemokine receptors. We have developed a novel spinal cord window preparation, which enables us to directly visualize CNS white matter microcirculation by intravital fluorescence videomicroscopy. Applying this technique of intravital fluorescence videomicroscopy we could provide direct in vivo evidence that encephalitogenic T cell blasts interact with the spinal cord white matter microvasculature without rolling and that alpha4-integrin mediates the G-protein independent capture and subsequently the G-protein dependent adhesion strengthening of T cell blasts to microvascular VCAM-1. LFA-1 was found to neither mediate the G-protein independent capture nor the G- protein dependent initial adhesion strengthening of encephalitogenic T cell blasts within spinal cord microvessel, but was rather involved in T cell extravasation across the vascular wall into the spinal cord parenchyme. Our observation that G-protein mediated signalling is required to promote adhesion strengthening of encephalitogenic T cells on BBB endothelium in vivo suggested the involvement of chemokines in this process. We found functional expression of the lymphoid chemokines CCL19/ELC and CCL21/SLC in CNS venules surrounded by inflammatory cells in brain and spinal cord sections of mice afflicted with EAE suggesting that the lymphoid chemokines CCL19 and CCL21 besides regulating lymphocyte homing to secondary lymphoid tissue might be involved in T lymphocyte migration into the immuneprivileged CNS during immunosurveillance and chronic inflammation. Here, I summarize our current knowledge on the sequence of traffic signals involved in T lymphocyte recruitment across the healthy and inflamed blood-brain and blood-spinal cord barrier based on our in vitro and in vivo investigations.
Immune cell migration across the blood–brain barrier: molecular mechanisms and therapeutic targeting
Resumo:
The endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier protect the CNS from the constantly changing milieu within the bloodstream. The BBB strictly controls immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS, such as viral or bacterial infections, or during inflammatory diseases, such as multiple sclerosis, immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of the available information on immune cell entry into the CNS is derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Consequently, our current knowledge on traffic signals mediating immune cell entry across the BBB during immunosurveillance and disease results mainly from experimental data in the EAE model. Therefore, a large part of this review summarizes these findings. Similarly, the potential benefits and risks associated with therapeutic targeting of immune cell trafficking across the BBB will be discussed in the context of multiple sclerosis, since elucidation of the molecular mechanisms relevant to this disease have largely relied on the use of its in vivo model, EAE.
Resumo:
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the endothelial blood-brain barrier (BBB) and gain access to the CNS. It is well-established that alpha4 integrins are actively involved in leukocyte recruitment across the BBB during EAE. In contrast, the role of endothelial E- and P-selectin in this process has been a controversial issue. In this study, we demonstrate that P-selectin protein can be detected in meningeal blood vessel endothelial cells in healthy SJL and C57BL/6 mice and on rare parenchymal CNS blood vessels in C57BL/6, but not SJL, mice. During EAE, expression of P-selectin but not E-selectin was found up-regulated on inflamed CNS microvessels surrounded by inflammatory infiltrates irrespective of their meningeal or parenchymal localization with a more prominent immunostaining detected in C57BL/6 as compared with SJL mice. P-selectin immunostaining could be localized to CNS endothelial cells and to CD41-positive platelets adhering to the vessel wall. Despite the presence of P-selectin in wild-type mice, E/P-selectin-deficient SJL and C57BL/6 mice developed clinical EAE indistinguishable from wild-type mice. Absence of E- and P-selectin did neither influence the activation of myelin-specific T cells nor the composition of the cellular infiltrates in the CNS during EAE. Finally, endothelial-specific tetracycline-inducible expression of E-selectin at the BBB in transgenic C57BL/6 mice did not alter the development of EAE. Thus, E- and P-selectin are not required for leukocyte recruitment across the BBB and the development of EAE in C57BL/6 and in SJL mice.