809 resultados para Dual gratings parallel matched
Resumo:
De entre os impostos que integram o nosso sistema fiscal, o imposto sobre o rendimento das pessoas singulares, ocupa um lugar de destaque na arrecadação de receitas. A sua im-portância coloca este imposto sobre pressão, pondo em confronto a tributação dos rendi-mentos de capitais e a tributação dos rendimentos do trabalho. O modelo de base compreensiva em que assenta o imposto pessoal está semi dualizado, dado tributar de forma diferente os rendimentos com origem em investimentos financeiros, subtraindo-os ao englobamento com os restantes rendimentos. Com a presente dissertação, pretende-se averiguar se o imposto pessoal, face ao recorte constitucional, pode adoptar um modelo de base semi-dual. Esta configuração permitiria simplificar o imposto, assumir duas bases e coloca-lo em linha com os modelos de tributação pessoal adoptados em alguns países europeus. O estudo realizado permitiu concluir que é possível a adopção de um modelo de base semi-dual, desde que se mantenha, por opção do contribuinte, o regime do englobamento com os restantes rendimentos. A dúvida que manifestamos relaciona-se com a oportuni-dade da concretização da reforma. O momento delicado de finanças públicas que o nosso país atravessa, traz tarefas acrescidas aos políticos, fruto dos compromissos internacionais assumidos, o que pode obstar ao agendamento da reforma do imposto pessoal que muitos reclamam. Daí que o caminho a seguir seria o do aperfeiçoamento do actual modelo.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
This paper proposes a global multiprocessor scheduling algorithm for the Linux kernel that combines the global EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed on more than one processor at a given time instant. We state that some priority inversion may actually be acceptable, provided it helps reduce contention, communication, synchronisation and coordination between parallel threads, while still guaranteeing the expected system’s predictability. Experimental results demonstrate the low scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.
Resumo:
Dynamic parallel scheduling using work-stealing has gained popularity in academia and industry for its good performance, ease of implementation and theoretical bounds on space and time. Cores treat their own double-ended queues (deques) as a stack, pushing and popping threads from the bottom, but treat the deque of another randomly selected busy core as a queue, stealing threads only from the top, whenever they are idle. However, this standard approach cannot be directly applied to real-time systems, where the importance of parallelising tasks is increasing due to the limitations of multiprocessor scheduling theory regarding parallelism. Using one deque per core is obviously a source of priority inversion since high priority tasks may eventually be enqueued after lower priority tasks, possibly leading to deadline misses as in this case the lower priority tasks are the candidates when a stealing operation occurs. Our proposal is to replace the single non-priority deque of work-stealing with ordered per-processor priority deques of ready threads. The scheduling algorithm starts with a single deque per-core, but unlike traditional work-stealing, the total number of deques in the system may now exceed the number of processors. Instead of stealing randomly, cores steal from the highest priority deque.
Resumo:
Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
High-level parallel languages offer a simple way for application programmers to specify parallelism in a form that easily scales with problem size, leaving the scheduling of the tasks onto processors to be performed at runtime. Therefore, if the underlying system cannot efficiently execute those applications on the available cores, the benefits will be lost. In this paper, we consider how to schedule highly heterogenous parallel applications that require real-time performance guarantees on multicore processors. The paper proposes a novel scheduling approach that combines the global Earliest Deadline First (EDF) scheduler with a priority-aware work-stealing load balancing scheme, which enables parallel realtime tasks to be executed on more than one processor at a given time instant. Experimental results demonstrate the better scalability and lower scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.
Resumo:
Multicore platforms have transformed parallelism into a main concern. Parallel programming models are being put forward to provide a better approach for application programmers to expose the opportunities for parallelism by pointing out potentially parallel regions within tasks, leaving the actual and dynamic scheduling of these regions onto processors to be performed at runtime, exploiting the maximum amount of parallelism. It is in this context that this paper proposes a scheduling approach that combines the constant-bandwidth server abstraction with a priority-aware work-stealing load balancing scheme which, while ensuring isolation among tasks, enables parallel tasks to be executed on more than one processor at a given time instant.
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.
Resumo:
Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.
Resumo:
This letter presents a new parallel method for hyperspectral unmixing composed by the efficient combination of two popular methods: vertex component analysis (VCA) and sparse unmixing by variable splitting and augmented Lagrangian (SUNSAL). First, VCA extracts the endmember signatures, and then, SUNSAL is used to estimate the abundance fractions. Both techniques are highly parallelizable, which significantly reduces the computing time. A design for the commodity graphics processing units of the two methods is presented and evaluated. Experimental results obtained for simulated and real hyperspectral data sets reveal speedups up to 100 times, which grants real-time response required by many remotely sensed hyperspectral applications.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia