954 resultados para Drosophila saltans
Resumo:
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Resumo:
Critical size at which metamorphosis is initiated represents an important checkpoint in insect development. Here, we use experimental evolution in Drosophila melanogaster to test the long-standing hypothesis that larval malnutrition should favour a smaller critical size. We report that six fly populations subject to 112 generations of laboratory natural selection on an extremely poor larval food evolved an 18% smaller critical size (compared to six unselected control populations). Thus, even though critical size is not plastic with respect to nutrition, smaller critical size can evolve as an adaptation to nutritional stress. We also demonstrate that this reduction in critical size (rather than differences in growth rate) mediates a trade-off in body weight that the selected populations experience on standard food, on which they show a 15-17% smaller adult body weight. This illustrates how developmental mechanisms that control life history may shape constraints and trade-offs in life history evolution.
Resumo:
Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.
Resumo:
Understanding how natural environments shape phenotypic variation is a major aim in evolutionary biology. Here, we have examined clinal, likely genetically based variation in morphology among 19 populations of the fruit fly (Drosophila melanogaster) from Africa and Europe, spanning a range from sea level to 3000 m altitude and including locations approximating the southern and northern range limit. We were interested in testing whether latitude and altitude have similar phenotypic effects, as has often been postulated. Both latitude and altitude were positively correlated with wing area, ovariole number, and cell number. In contrast, latitude and altitude had opposite effects on the ratio between ovariole number and body size, which was negatively correlated with egg production rate per ovariole. We also used transgenic manipulation to examine how increased cell number affects morphology and found that larger transgenic flies, due to a higher number of cells, had more ovarioles, larger wings, and, unlike flies from natural populations, increased wing loading. Clinal patterns in morphology are thus not a simple function of changes in body size; instead, each trait might be subject to different selection pressures. Together, our results provide compelling evidence for profound similarities as well as differences between phenotypic effects of latitude and altitude.
Resumo:
The serine-threonine kinase LKB1 regulates cell polarity from Caenorhabditis elegans to man. Loss of lkb1 leads to a cancer predisposition, known as Peutz-Jeghers Syndrome. Biochemical analysis indicates that LKB1 can phosphorylate and activate a family of AMPK- like kinases, however, the precise contribution of these kinases to the establishment and maintenance of cell polarity is still unclear. Recent studies propose that LKB1 acts primarily through the AMP kinase to establish and/or maintain cell polarity. To determine whether this simple model of how LKB1 regulates cell polarity has relevance to complex tissues, we examined lkb1 mutants in the Drosophila eye. We show that adherens junctions expand and apical, junctional, and basolateral domains mix in lkb1 mutants. Surprisingly, we find LKB1 does not act primarily through AMPK to regulate cell polarity in the retina. Unlike lkb1 mutants, ampk retinas do not show elongated rhabdomeres or expansion of apical and junctional markers into the basolateral domain. In addition, nutrient deprivation does not reveal a more dramatic polarity phenotype in lkb1 photoreceptors. These data suggest that AMPK is not the primary target of LKB1 during eye development. Instead, we find that a number of other AMPK-like kinase, such as SIK, NUAK, Par-1, KP78a, and KP78b show phenotypes similar to weak lkb1 loss of function in the eye. These data suggest that in complex tissues, LKB1 acts on an array of targets to regulate cell polarity.
Resumo:
Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.
Resumo:
Background: Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations. Furthermore, these evolutionary forces may interact with each other. Here we study the impact of an ongoing adaptive process at the molecular genetic level by analyzing the temporal genetic changes throughout 40 generations of adaptation to a common laboratory environment. Specifically, genetic variability, population differentiation and demographic structure were compared in two replicated groups of Drosophila subobscura populations recently sampled from different wild sources. Results: We found evidence for a decline in genetic variability through time, along with an increase in genetic differentiation between all populations studied. The observed decline in genetic variability was higher during the first 14 generations of laboratory adaptation. The two groups of replicated populations showed overall similarity in variability patterns. Our results also revealed changing demographic structure of the populations during laboratory evolution, with lower effective population sizes in the early phase of the adaptive process. One of the ten microsatellites analyzed showed a clearly distinct temporal pattern of allele frequency change, suggesting the occurrence of positive selection affecting the region around that particular locus. Conclusion: Genetic drift was responsible for most of the divergence and loss of variability between and within replicates, with most changes occurring during the first generations of laboratory adaptation. We also found evidence suggesting a selective sweep, despite the low number of molecular markers analyzed. Overall, there was a similarity of evolutionary dynamics at the molecular level in our laboratory populations, despite distinct genetic backgrounds and some differences in phenotypic evolution.
Resumo:
Background: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure.Results: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae.Conclusion: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Resumo:
Background: Transposable elements (TEs) constitute a substantial amount of all eukaryotic genomes. They induce an important proportion of deleterious mutations by insertion into genes or gene regulatory regions. However, their mutational capabilities are not always adverse but can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution and activity in the genomes of populations under different environmental and demographic regimes, is important to understand their role in species evolution. In this work we study the chromosomaldistribution of two TEs, gypsy and bilbo, in original and colonizing populations of Drosophilasubobscura to reveal the putative effect of colonization on their insertion profile.Results: Chromosomal frequency distribution of two TEs in one original and three colonizingpopulations of D. subobscura, is different. Whereas the original population shows a low insertionfrequency in most TE sites, colonizing populations have a mixture of high (frequency ¿ 10%) andlow insertion sites for both TEs. Most highly occupied sites are coincident among colonizingpopulations and some of them are correlated to chromosomal arrangements. Comparisons of TEcopy number between the X chromosome and autosomes show that gypsy occupancy seems to becontrolled by negative selection, but bilbo one does not. Conclusion: These results are in accordance that TEs in Drosophila subobscura colonizing populations are submitted to a founder effect followed by genetic drift as a consequence of colonization. This would explain the high insertion frequencies of bilbo and gypsy in coincident sites of colonizing populations. High occupancy sites would represent insertion events prior to colonization. Sites of low frequency would be insertions that occurred after colonization and/orcopies from the original population whose frequency is decreasing in colonizing populations. Thiswork is a pioneer attempt to explain the chromosomal distribution of TEs in a colonizing specieswith high inversion polymorphism to reveal the putative effect of arrangements in TE insertionprofiles. In general no associations between arrangements and TE have been found, except in a fewcases where the association is very strong. Alternatively, founder drift effects, seem to play aleading role in TE genome distribution in colonizing populations.
Resumo:
Abstract In this study, chromosomal inversion polymorphism data for a natural population of Drosophila subobscura from a swampy region near the town of Apatin (Serbia) were compared with data for the same population collected approximately 15 years earlier. The pattern of chromosomal inversion polymorphism changed over time. There were significant increases in the frequency of characteristic southern latitude ("warm" adapted) chromosomal arrangements and significant decreases in the frequency of characteristic northern latitude ("cold" adapted) chromosomal arrangements in the O and U chromosomes. The chromosomal arrangements O3+4 and O3+4+22 (derived from the O3+4 arrangement)showed significant increases in 2008 and 2009 with regard to the 1994 sample. There was also a significant increase (~50%) in the U1+2 arrangement, while U1+8+2 (a typical southern arrangement) was detected for the first time. Since the Apatin swampy population ofD. subobscura has existed for a long time in a stable habitat with high humidity that has not been changed by man our results indicate that natural selection has produced chromosomal changes in response to the increase in temperature that has occurred in the Balkan Peninsula of central southeastern European. Key words: chromosomal inversions, Drosophila subobscura, global warming, karyotypes.
Resumo:
Abstract The recent colonization of America by Drosophila subobscura represents a great opportunity for evolutionary biology studies. Knowledge of the populations from which the colonization started would provide an understanding of how genetic composition changed during adaptation to the new environment. Thus, a 793 nucleotide fragment of the Odh (Octanol dehydrogenase) gene was sequenced in 66 chromosomal lines from Barcelona (western Mediterranean) and in 66 from Mt. Parnes (Greece, eastern Mediterranean). No sequence of Odh fragment in Barcelona or Mt. Parnes was identical to any of those previously detected in America. However, an Odh sequence from Barcelona differed in only one nucleotide from another found in American populations. In both cases, the chromosomal lines presented the same inversion: O7, and the Odh gene was located within this inversion. This evidence suggests a possible western Mediterranean origin for the colonization. Finally, the molecular and inversion data indicate that the colonization was not characterized by multiple reintroductions.
Resumo:
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Resumo:
Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.
Resumo:
Background: Chemoreception is a widespread mechanism that is involved in critical biologic processes, including individual and social behavior. The insect peripheral olfactory system comprises three major multigene families: the olfactory receptor (Or), the gustatory receptor (Gr), and the odorant-binding protein (OBP) families. Members of the latter family establish the first contact with the odorants, and thus constitute the first step in the chemosensory transduction pathway.Results: Comparative analysis of the OBP family in 12 Drosophila genomes allowed the identification of 595 genes that encode putative functional and nonfunctional members in extant species, with 43 gene gains and 28 gene losses (15 deletions and 13 pseudogenization events). The evolution of this family shows tandem gene duplication events, progressive divergence in DNA and amino acid sequence, and prevalence of pseudogenization events in external branches of the phylogenetic tree. We observed that the OBP arrangement in clusters is maintained across the Drosophila species and that purifying selection governs the evolution of the family; nevertheless, OBP genes differ in their functional constraints levels. Finally, we detect that the OBP repertoire evolves more rapidly in the specialist lineages of the Drosophila melanogaster group (D. sechellia and D. erecta) than in their closest generalists.Conclusion: Overall, the evolution of the OBP multigene family is consistent with the birth-and-death model. We also found that members of this family exhibit different functional constraints, which is indicative of some functional divergence, and that they might be involved in some of the specialization processes that occurred through the diversification of the Drosophila genus.
Resumo:
Sequencing of pools of individuals (Pool-Seq) represents a reliable and cost-effective approach for estimating genome-wide SNP and transposable element insertion frequencies. However, Pool-Seq does not provide direct information on haplotypes so that, for example, obtaining inversion frequencies has not been possible until now. Here, we have developed a new set of diagnostic marker SNPs for seven cosmopolitan inversions in Drosophila melanogaster that can be used to infer inversion frequencies from Pool-Seq data. We applied our novel marker set to Pool-Seq data from an experimental evolution study and from North American and Australian latitudinal clines. In the experimental evolution data, we find evidence that positive selection has driven the frequencies of In(3R)C and In(3R)Mo to increase over time. In the clinal data, we confirm the existence of frequency clines for In(2L)t, In(3L)P and In(3R)Payne in both North America and Australia and detect a previously unknown latitudinal cline for In(3R)Mo in North America. The inversion markers developed here provide a versatile and robust tool for characterizing inversion frequencies and their dynamics in Pool-Seq data from diverse D. melanogaster populations.