845 resultados para Donnelley Wildlife Management Area--Maps
Resumo:
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.
Resumo:
"March 1988."
Resumo:
Covers Manhattan and adjacent districts.
Resumo:
The American woodcock (Scolopax minor) population index in North America has declined 0.9% a year since 1968 prompting managers to identify priority information and management needs for the species (Sauer et al 2008). Managers identified a need for a population model that better informs on the status of American woodcock populations (Case et al. 2010). Population reconstruction techniques use long-term age-at-harvest data and harvest effort to estimate abundances with error estimates. Four new models were successfully developed using survey data (1999 to 2013). The optimal model estimates sex specific harvest probability for adult females at 0.148 (SE = 0.017) and all other age-sex cohorts at 0.082 (SE = 0.008) for the most current year 2013. The model estimated a yearly survival rate of 0.528 (SE = 0.008). Total abundance ranged from 5,206,000 woodcock in 2007 to 6,075,800 woodcock in 1999. This study represents the first population estimates of woodcock populations.
Resumo:
Aeronautical chart showing designated helicopter routes and control areas.
Resumo:
Relief shown by hachures. Depths shown by contours and soundings.
Resumo:
"*GPO: 1994--301-085/00060. Reprint 1993."
Resumo:
"*GPO: 1997--417-648/60121. Reprint 1997."
Resumo:
"*GPO:2000--460-976/00285. Reprint 1997."
Resumo:
"*GPO:2005--310-394/00396. Reprint 2005."
Resumo:
Relief shown by hachures. Depths shown by soundings.
Resumo:
This work project addresses the differences and similarities in Portuguese architects’ careers. As a study in the Human Resources Management area, where a contemporary career concept has been gaining strength, it is focused on architects’ careers since they are artistic/technical professional workers with no boundaries or specific motivations. A total of 21 semi-structured in-depth interviews were conducted and studied, with different architects from different age groups and paths, using a qualitative methodology approach. The interviews explored themes as the reasons for deciding to be an architect, challenges and opportunities, academic paths, best projects and future prospects. This study revealed that Portuguese architects have specific motivations, relations and expertise that reflect particular reasons why, how and with whom architects work and what is to them a successful career as an architect.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal, 2016.
Resumo:
The South Carolina Department of Natural Resources manages Waterfowl Management Areas to maintain populations of migratory waterfowl. This report provides a summary of the species, number of hunters, ducks per hunter, shots fired, cripples lost, and percentage lost of waterfowl hunted in the management areas.