949 resultados para Dna damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori (H. pylori) is considered to predispose carriers to gastric cancer but its role on gastric carcinogenesis is still unknown. The aim of this study was to investigate DNA damage by the comet assay in gastric epithelial cells from antrum and corpus in H. pylori-infected patients with gastritis of different degrees. H. pylori status, gastric histology, and DNA damage were studied in 62 H. pylori-infected and 18 non-infected patients, all of them non-smokers, nonalcoholics, and non-drug users. DNA damage was significantly higher in H. pylori-infected patients presenting gastritis than in non-infected patients with normal mucosa. A direct correlation between the levels of DNA damage and the intensity of gastritis was observed in H. pylori-infected patients. Association between DNA damage and age was also found. The levels of DNA damage were significantly higher in patients older than 50 years than in younger patients with the same degree of gastritis. Our results indicate that H. pylori infection is associated with DNA damage in gastric epithelial cells, which could be a biomarker of risk for gastric cancer in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to determine if patients with a history of previous urothelial cell carcinoma (UCC) but with current normal urinary cytology have DNA damage in urothelial cells, the single-cell gel electrophoresis (comet) assay was conducted with cells obtained by urinary bladder washings from 44 patients (28 with a history of previous UCC). Increased DNA damage was observed in cytologically normal urothelial cells of patients with a history of UCC when compared with referents with no similar history and after correcting the data for smoking status and age (P < 0.018). Increased DNA damage also correlated with the highest tumor grade, irrespective of time or course of the disease after clinical intervention (Kendall tau correlation, 0.37, P = 0.016). Moreover, aneuploidy, as assessed by DNA content ratio (DCR; 75th/25th percentile of total DNA fluorescence of 50 comets/patient) was unaltered by smoking status, but increased with UCC grade: 1.39 +/- 0.12 (median +/- 95% confidence interval; referents); 1.43 +/- 0.11 (Grade I UCC; P = 0.264, against referents); 1.49 +/- 0.16 (Grade II UCC; P = 0.057); 1.57 +/- 0.16 (Grade III UCC; P = 0.003). Micronucleated urothelial cells (MNC) were also scored on Giemsa-stained routine cytological smears and were found not to correlate with DNA damage or DCR. MNC frequencies were higher for patients with a history of UCC and/or smoking than referents with neither history, but there was no statistical difference between groups. Taken together, these results suggest that the normal-appearing urothelium of patients resected for UCC still harbor genetically unstable cells. (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was designed to evaluate the toxicogenetic or protective effect of cooked and dehydrated black beans (Phaseolus vulgaris L.) in bone marrow and peripheral blood cells of exposed mice. The frequency of micronuclei detected using the bone marrow erythrocyte micronucleus test and level of DNA lesions detected by the comet assay were chosen as end-points reflecting mutagenic and genotoxic damage, respectively. Initially, Swiss male mice were fed with a 20% black bean diet in order to detect mutagenic and genotoxic activity. However, no increase in the frequency of bone marrow micronucleated polychromatic erythrocytes (MN PCEs) or DNA lesion in leukocytes was observed. In contrast, received diets containing 1, 10 or 20% of black beans, a clear, but not dose-dependent reduction in the frequency of MN PCEs were observed in animals simultaneously treated with cyclophosphamide, an indirect acting mutagen. Similar results were observed in leukocytes by the comet assay. Commercial anthocyanin was also tested in an attempt to identify the bean components responsible for this protective effect. However, instead of being protective, the flavonoid, at the highest dose administered (50 mg/kg bw), induced primary DNA lesion, as detected by the comet assay. These data indicate the importance of food components in preventing genetic damage induced by chemical mutagens, and also reinforce the role of toxicogenetic techniques in protecting human health. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoprevention opens new perspectives in the prevention of cancer and other degenerative diseases. Use of target-organ biological models at the histological and genetic levels can markedly facilitate the identification of such potential chemopreventive agents. Colon cancer is one of the highest incidence rates throughout the world and some evidences have indicated carotenoids as possible agents that decrease the risk of colorectal cancer. In the present study, we evaluate the activity of annatto (Bixa orellaria L.), a natural food colorant rich in carotenoid, on the formation of aberrant crypt foci (ACF) induced by dimethy1hydrazine (DMH) in rat colon. Further, we investigate, the effect of annatto on DMH-induced DNA damage, by the comet assay. Male Wistar rats were given s.c. injections of DMH (40 mg/kg body wt.) twice a week for 2 weeks to induce ACE They also received experimental diets containing annatto at 20, 200 or 1000 ppm for five 5 weeks before (pre-treatment), or 10 weeks after (post-treatment) DMH treatment. In both protocols the rats were sacrificed on week 15th. For the comet assay, the animals were fed with the same experimental diets for 2 weeks. Four hours before the sacrifice, the animals received an s.c. injection of DMH (40 mg/kg body wt.). Under such conditions, dietary administration of 1000 ppm annatto neither induce DNA damage in blood and colon cells nor aberrant crypt foci in rat distal colon. Conversely, annatto was successful in inhibiting the number of crypts/colon (animal), but not in the incidence of DMH-induced ACF, mainly when administered after DMH. However, no antigenotoxic effect was observed in colon cells. These findings suggest possible chemopreventive effects of annatto through their modulation of the cryptal cell proliferation but not at the initiation stage of colon carcinogenesis. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Chlorhexidine digluconate is widely used in dental practice for decreasing plaque control, controlling gingivitis and disinfecting root canals. However, the undesirable effects of chlorhexidine digluconate regarding its genotoxicity are conflicting in the literature. Thus, the aim of this study was to investigate the genotoxicity of chlorhexidine digluconate in rat peripheral blood and oral mucosal cells by the single cell gel (comet) assay and micronucleus assay.Methods: Thirty male Wistar rats were distributed into three groups: negative control; experimental group orally treated with 0.5 ml of 0.12% chlorhexidine digluconate, twice daily, during 8 days; and positive control, which received 4-nitroquinoline 1-oxide at 0.5 g/l by drinking water.Results: A statistically significant increase of DNA damage was observed in leukocytes and oral mucosal cells of the chlorhexidine digluconate treated group, as assessed by the comet assay. However, no increase of micronucleated cells was detected in reticulocytes from peripheral blood cells.Conclusions: Taken together, the data indicate that chlorhexidine digluconate is able to induce primary DNA damage in leukocytes and in oral mucosal cells, but no chromosome breakage or loss in erythrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxorubicin (DOX) is an efficient chemotherapeutic agent used against several types of tumors; however, its use is limited due to severe cardiotoxicity. Since it is accepted that reactive oxygen species are involved in DOX-induced cardiotoxicity, antioxidant agents have been used to attenuate its side effects. To determine tomato-oleoresin protection against cardiac oxidative DNA damage induced by DOX, we distributed Wistar male rats in control (C), lycopene (L), DOX (D) and DOX+lycopene (DL) groups. They received corn oil (C, D) or tomato-oleoresin (5 mg/kg body wt. day) (L, DL) by gavage for a 7-week period. They also received saline (C, L) or DOX (4 ma/kg body wt.) (D, DL) intraperitoneally at the 3rd, 4th, 5th, and at 6th week. Lycopene absorption was checked by HPLC. Cardiac oxidative DNA damage was evaluated by the alkaline Comet assay using formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (endo 111). Cardiomyocyte levels of SBs, SBs FPG and SBs Endo III were higher in rats from D when compared to other groups. DNA damage levels in cardiomyocytes from DL were not different when compared to C and L groups. The viability of cardiomyocytes from D or DL was lower than C or L groups (p < 0.01). Lycopene levels (mean +/- S.D. nmol/kg) in saponified hearts were similar between L (47.43 +/- 11.78) and DL (49.85 +/- 16.24) groups. Our results showed: (1) lycopene absorption was confirmed by its cardiac levels; (2) DOX-induced oxidative DNA damage in cardiomyocyte; (3) tomato-oleoresin supplementation protected against cardiomyocyte oxidative DNA damage. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoride has been widely used in dentistry because it is an effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on the genetic apparatus. Genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. In the current study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel ( comet) assay in peripheral blood, oral mucosa and brain cells in vivo. Male Wistar rats were exposed to sodium fluoride (NaF) at a 0, 7 and 100 ppm dose for drinking water during 6 weeks. The results pointed out that NaF did not contribute to the DNA damage in all cellular types evaluated as depicted by the mean tail moment and tail intensity. These findings are clinically important since they represent an important contribution to the correct evaluation of the potential health risk associated with dental agents exposure. Copyright (C) 2004 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis is a honeybee product with several biological and therapeutic properties, including antimutagenic and anticarcinogenic activities. The effects of an aqueous extract of propolis (AEP) were evaluated on the formation of 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) and DNA damage in the colon of male Wistar rats by the ACF and Comet assays, respectively. AEP was administered orally at 0.01%, 0.03%, 0.1%, and 0.3% in the drinking water, which resulted in doses of approximately 12, 34, 108, and 336 mg/kg body weight/day. Animals were also given a single subcutaneous injection of 40 mg/kg DMH and sacrificed 4 hr later for evaluating DNA damage, or 4 doses of 40 mg/kg DMH, administered 2 doses/week for 2 weeks, and sacrificed 12 weeks after the last injection for evaluating ACF development in the distal colon. Administration of AEP either simultaneously with or after the DMH treatment resulted in no statistically significant reduction of ACF. In contrast, 0.01%, 0.03%, and 0.3% AEP, given simultaneously with DMH, reduced DNA damage induction in the mid and distal colon. However, 0.3% AEP alone increased DNA damage in the colon. In conclusion, AEP had no effect on the formation of DMH-induced ACF in rat colon, but it modulated DMH-induced DNA damage in colon cells. Further investigations are recommended in order to establish the conditions under which propolis produces either protective or deleterious effects. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since chlorhexidine is effective against microorganisms, it is widely recommended in dentistry. However, studies have provided evidence that chlorhexidine is toxic for a variety of cell types. In order to identify potential genotoxins in different cell types, the purpose of this study was to investigate whether chlorhexidine digluconate is able to cause, in terms of DNA damage, alterations in leukocytes, liver, kidney and urinary bladder by the single cell gel (comet) assay. Ten male Wistar rats were divided into two groups: a negative control and the experimental group treated with 3 ml of 0.12% chlorhexidine digluconate by gavage once a day for 8 days. Statistically significant increases of DNA damage was observed in leukocytes and kidney cells of the chlorhexidine digluconate treated group as depicted by the mean tail moment. Taken together, the data indicate that leukocytes and kidney cells are potential targets for primary DNA damage following oral exposure to chlorhexidine digluconate as detected by single cell gel (comet) assay. (c) 2006 Elsevier GmbH. All rights reserved.