872 resultados para Dissipative forces
Time integration techniques to investigate the long-term behaviour of dissipative structural systems
Resumo:
Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterize their behaviour at the particle scale. While 2D observations are now routinely carried out in laboratories, 3D measurements remain a challenge. In this paper, we use a simple model system, a packing of soft elastic spheres, to illustrate the capability of X-ray microtomography to characterise the internal structure and local behaviour of granular systems. Image analysis techniques can resolve grain positions, shapes and contact areas; this is used to investigate the material's microstructure and its evolution upon strain. In addition to morphological measurements, we develop a technique to quantify contact forces and estimate the internal stress tensor. As will be illustrated in this paper, this opens the door to a broad array of static and dynamical measurements in 3D disordered systems
Resumo:
Theory is presented for simulating the dynamic wheel forces generated by heavy road vehicles and the resulting dynamic response of road surfaces to these loads. Sample calculations are provided and the vehicle simulation is validated with data from full-scale tests. The methods are used in the accompanying paper to simulate the road damage done by a tandem-axle vehicle.
Resumo:
The literature relating to road surface failure and design is briefly reviewed and the conventional methods for assessing the road damaging effects of dynamic tire forces are examined. A new time domain technique for analyzing dynamic tire forces and four associated road damage criteria are presented. The force criteria are used to examine the road damaging characteristics of a simple tandem-axle vehicle model for a range of speed and road roughness conditions. It is concluded that for the proposed criteria, the theoretical service life of road surfaces that are prone to fatigue failure may be reduced significantly by the dynamic component of wheel forces. The damage done to approximately five per cent of the road surface area during the passage of a theoretical model vehicle at typical highway speeds may be increased by as much as four times.
Resumo:
This paper describes a series of tests conducted on a UK trunk road, in which the dynamic tyre forces generated by over 1500 heavy goods vehicles (HGVs) were measured using a load measuring mat containing 144 capacitive strip sensors. The data was used to investigate the relative road damaging potential of the various classes of vehicles, and the degree of spatial repeatability of tyre forces present in a typical highway fleet. Approximately half the vehicles tested were found to contribute to a spatially repeatable pattern of pavement loading. On average, air suspended vehicles were found to generate lower dynamic load coefficients than steel suspended vehicles. However, air suspended vehicles also generated higher mean levels of theoretical road damage (aggregate force) than steel suspended vehicles, indicating that the ranking of suspensions depends on the pavement damage criterion used.
Resumo:
A UHV atomic force microscope with a conducting tip is used to measure the tip-sample conductance as a function of the applied force on well-ordered, monolayer islands of C60 on Cu(111). By imaging the sample before and after each force-distance experiment, it was possible to investigate the forces required for the removal of individual C60 molecules from the islands. The removal of C60 occurs near defects or edges of the C60 islands and requires an applied force of 5-20 nN, which corresponds to applied pressures of order 1 GPa. In addition, it was possible to investigate the strength of the C60 film on the molecular scale. It was found that the mechanical stiffness of a C60 molecule is of order 6 N/m and the islands appear to undergo a reversible yield process at an applied pressure of around 1.2 GPa.