898 resultados para Discrete Regression and Qualitative Choice Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gradualist approach to trade liberalization views the uniform tariffs implied by MFN status as an important step on the path to free trade. We investigate whether a regime of uniform tariffs will be preferable to discriminatory tariffs when countries engage in non-cooperative interaction in multilateral trade. The analysis includes product differentiation and asymmetric costs. We show that with the cost asymmetry the countries will disagree on the choice of tariff regime. When the choice of import tariffs and export subsidies is made sequentially the uniform tariff regime may not be sustainable, because of an incentive to deviate to a discriminatory regime. Hence, an international body is needed to ensure compliance with tariff agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. Methods: A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. Key Results: Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. Conclusions: Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common method for testing preference for objects is to determine which of a pair of objects is approached first in a paired-choice paradigm. In comparison, many studies of preference for environmental enrichment (EE) devices have used paradigms in which total time spent with each of a pair of objects is used to determine preference. While each of these paradigms gives a specific measure of the preference for one object in comparison to another, neither method allows comparisons between multiple objects simultaneously. Since it is possible that several EE objects would be placed in a cage together to improve animal welfare, it is important to determine measures for rats' preferences in conditions that mimic this potential home cage environment. While it would be predicted that each type of measure would produce similar rankings of objects, this has never been tested empirically. In this study, we compared two paradigms: EE objects were either presented in pairs (paired-choice comparison) or four objects were presented simultaneously (simultaneous presentation comparison). We used frequency of first interaction and time spent with each object to rank the objects in the paired-choice experiment, and time spent with each object to rank the objects in the simultaneous presentation experiment. We also considered the behaviours elicited by the objects to determine if these might be contributing to object preference. We demonstrated that object ranking based on time spent with objects from the paired-choice experiment predicted object ranking in the simultaneous presentation experiment. Additionally, we confirmed that behaviours elicited were an important determinant of time spent with an object. This provides convergent evidence that both paired choice and simultaneous comparisons provide valid measures of preference for EE objects in rats. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments investigated the influence of implicit memory on consumer choice for brands with varying levels of familiarity. Priming was measured using a consideration-choice task, developed by Coates, Butler and Berry (2004). Experiment 1 employed a coupon-rating task at encoding that required participants to meaningfully process individual brand names, to assess whether priming could affect participants' final (preferred) choices for familiar brands. Experiment 2 used this same method to assess the impact of implicit memory on consideration and choice for unknown and leader brands, presented in conjunction with familiar competitors. Significant priming was obtained in both experiments, and was shown to directly influence final choice in the case of familiar and highly familiar leader brands. Moreover, it was shown that a single prior exposure could lead participants to consider buying an unknown, and indeed fictitious, brand. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.