738 resultados para Diet Diary
Resumo:
Marijuana use has been associated with increased appetite, high caloric diet, acute increase in blood pressure, and decreases in high-density lipoprotein cholesterol and triglycerides. Marijuana is the most commonly used illicit drug in the United States, but its long-term effects on body mass index (BMI) and cardiovascular risk factors are unknown. Using 15 years of longitudinal data from 3,617 black and white young adults participating in the Coronary Artery Risk Development in Young Adults (CARDIA) study, we assessed whether marijuana use was associated with caloric intake, BMI, and cardiovascular risk factors. Of the 3,617 participants, 1,365 (38%) reported ever using marijuana. Marijuana use was associated with male gender, tobacco smoking, and other illicit drug use. More extensive marijuana use was associated with a higher caloric intake (2,746 kcal/day in never users to 3,365 kcal/day in those who used marijuana for > or = 1,800 days over 15 years) and alcohol intake (3.6 to 10.8 drinks/week), systolic blood pressure (112.7 to 116.5 mm Hg), and triglyceride levels (84 to 100 mg/dl or 0.95 to 1.13 mmol/L, all p values for trend < 0.001), but not with higher BMI and lipid and glucose levels. In multivariate analysis, the associations between marijuana use and systolic blood pressure and triglycerides disappeared, having been mainly confounded by greater alcohol use in marijuana users. In conclusion, although marijuana use was not independently associated with cardiovascular risk factors, it was associated with other unhealthy behaviors, such as high caloric diet, tobacco smoking, and other illicit drug use, which all have long-term detrimental effects on health.
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
The overall thermogenic response to food intake measured over a whole day in 20 young nondiabetic obese women (body fat mean +/- SEM: 38.6 +/- 0.7%), was compared with that obtained in eight nonobese control women (body fat: 24.7 +/- 0.9%). The energy expenditure of the subjects was continuously measured over 24 h with a respiration chamber, and the spontaneous activity was assessed by a radar system. A new approach was used to obtain the integrated thermogenic response to the three meals ingested over the day (from 8:30 AM to 10:30 PM). This method allows to subtract the energy expended for physical activity from total energy expenditure and to calculate the integrated dietary-induced thermogenesis as the difference between the energy expended without physical activity and basal metabolic rate. The thermogenic response to the three meals (expressed in percentage of the total energy ingested) was found to be blunted in obese women (8.7 +/- 0.8%) as compared with that of controls (14.8 +/- 1.1%). There was an inverse correlation between the percentage body fat and the diet-induced thermogenesis (r = -0.61, p less than 0.001). In addition, the relative increase in diurnal urinary norepinephrine excretion was lower in obese than in the control subjects. It is concluded that a low overall thermogenic response to feeding may be a contributing factor for energy storage in some obese subjects; a blunted response of the sympathetic nervous system could explain this low thermogenic response.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
The importance of age and feeding on the performance of Cephalonomia stephanoderis (Hymenoptera, Bethylidae), a parasitoid of the coffee berry borer, Hypothenemus hampei (Coleoptera, Curculionidae) was investigated in the laboratory. Groups of female parasitoids were subject to the following treatments: a group fed during one, five and ten days after emergence of adults with coffee borer larvae; another group fed only with honey solution during five days after emergence; and as a control, a third group was kept without food for five days. At the end of each treatment, survivorship, parasitoid activity (walking and flying capacity in an arena), search capacity for finding coffee borer-infested berries, host feeding and oviposition (on immature hosts), were assessed. Unfed females showed a significant decrease in survivorship compared to individuals that were fed. The type of meal (insects or honey) did not significantly influence parasitoid activity, search and oviposition capacities. Females fed with honey solution significantly consumed less immature coffee borers. Younger females (one day old) walked and flew out of the arena significantly faster than older ones (5 and 10 days old). Implications of these results are discussed on the performance of C. stephanoderis as a biological control agent of the coffee berry borer.
Resumo:
Effects of female diet and age on offspring sex ratio of the solitary parasitoid Pachycrepoideus vindemmiae (Rondani) (Hymenoptera, Pteromalidae). Theories predict that females of parasitoid wasps would adjust the offspring sex ratio to environmental conditions in the oviposition patch, but the diet and age of females would also affect the sex ratio adjustment. Our focus was to test the effects of female diet and age on offspring sex ratio of the solitary parasitoid wasp, Pachycrepoideus vindemmiae (Rondani, 1875). Our results showed that females fed with honey had significantly less female biased offspring sex ratio than those fed only with water. Offspring sex ratio (male percentage) decreased with female age or female longevity at the beginning of oviposition but increased at the end. There should be a sperm limitation in P. vindemmiae females at the end of oviposition, and a higher frequency of unfertilized eggs were laid then. Females also laid more unfertilized eggs at the beginning of oviposition, which would be necessary to insure the mating among offspring. Male offspring developed faster and emerged earlier, which would also reduce the risk of virginity in offspring with female-biased sex ratio.
Resumo:
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Resumo:
Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.
Resumo:
Only a few studies, and mostly in temperate climates in Europe, have examined the breeding and diet of long-eared owls (Asia otus) compared to studies of cavity-breeding owls, possibly because of the difficulties in reaching the nests of the former. Here we studied a population of long-eared owls, monitoring the diet of breeding owls and that of owls at a communal roost, every two to three months during 2006 -2009, in a semi-arid region in Israel. It was found that the studied owls produced more young than in most countries in Europe. Diet was not associated with breeding parameters of the owls, whereas laying date was negatively correlated with both clutch size and number of nestlings. We found that more social voles (Microtus socialis) and fewer birds and house mice (Mus musculus) made up the diet at nests than that of adults at the roosts. The diet and breeding of long-eared owls in Israel differ from that in Europe, with birds and mice comprising an important part of the diet, in addition to voles.
Resumo:
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Resumo:
We analysed and compared the diet of Audouin´s gulls Larus audouinii between their two largest breeding sites in the world: the Ebro Delta and the Chafarinas Islands (western Mediterranean). These two localities showed marked differences in the features of the commercial fishing fleet: in the Ebro Delta area a large fishing fleet produced large amounts of discards, while in the Chafarinas the fleet discarded smaller amounts of fish and marine invertebrates, due to the smaller number of vessels. It is also likely that the percentage of discards from total catches is also lower around the Chafarinas than at the Ebro Delta. We distinguished two types of fishing to compare diet compositions: diurnal (only trawling activity) and diurnal and nocturnal (trawling and purse-seine activity, respectively). We also differentiated regurgitates from young nestlings (up to 20 days old) and from older nestlings or adult birds. At the two localities, fish was the main food of Audouin´s gulls, with epipelagic prey (mainly clupeoids) being more important when both diurnal and nocturnal fisheries were operating. This confirms that epipelagic prey either caught actively by the gulls or linked to fisheries was particularly important in the feeding habits of Audouin´s gulls. Nevertheless, differences between the two colonies appear mainly when only trawlers operated: while at the Ebro Delta gulls showed higher consumption of benthic-mesopelagic prey (probably linked to a higher trawler discard availability), gulls from the Chafarinas Islands consumed higher biomass of epipelagic prey probably caught actively at night. When both fleets operated around the two colonies, the average biomass of prey in a regurgitate of younger chicks was significantly higher at the Ebro Delta than at Chafarinas, and the opposite trend was recorded for older nestlings and adults. Niche width was broader in Chafarinas than in the Ebro Delta for both age classes and for any fishing fleet schedule, suggesting again that the exploitation of discards was higher at the Ebro Delta than at the Chafarinas, where gulls showed a more varied diet. Despite the fact that availability of discards was probably higher at the Ebro Delta than at Chafarinas, the per capita availability was not so different at both localities due to the increasing seabird community population at the Ebro Delta, which ca. doubled that at Chafarinas in the last decade.