584 resultados para Diallyl disulfide
Resumo:
Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wildtype and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mm BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wildtype hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.
Resumo:
Cyclotides are a recently discovered family of disulfide rich proteins from plants that contain a circular protein backbone. They are exceptionally stable, as exemplified by their use in native medicine of the prototypic cyclotide kalata B1. The peptide retains uterotonic activity after the plant from which it is derived is boiled to make a medicinal tea. The circular backbone is thought to be in part responsible for the stability of the cyclotides, and to investigate its role in determining structure and biological activity, an acyclic derivative, des-(24-28)-kalata B1, was chemically synthesized and purified. This derivative has five residues removed from the 29-amino acid circular backbone of kalata B1 in a loop region corresponding to a processing site in the biosynthetic precursor protein. Two-dimensional NMR spectra of the peptide were recorded, assigned, and used to identify a series of distance, angle, and hydrogen bonding restraints. These were in turn used to determine a representative family of solution structures. Of particular interest was a determination of the structural similarities and differences between des-(2428)-kalata B1 and native kalata B1. Although the overall three-dimensional fold remains very similar to that of the native circular protein, removal of residues 24-28 of kalata B1 causes disruption of some structural features that are important to the overall stability. Furthermore, loss of hemolytic activity is associated with backbone truncation and linearization.
Resumo:
Monoclonal antibody (MAb) 263 is a widely used monoclonal antibody that recognizes the extracellular domain (ECD) of the GH receptor. It has been shown to act as a GH agonist both in vitro and in vivo, and we report here that it must be divalent to exert its effect on the full-length receptor. To understand the mechanism of its agonist action, we have determined the precise epitope for this antibody using a novel random PCR mutagenesis approach together with expression screening in yeast. A library of 5200 clones of rabbit GH receptor ECD mutants were screened both with MAb 263 and with an anticarboxy-tag antibody to verify complete ECD expression. Sequencing for clones that expressed complete ECD but were not MAb 263 positive identified 20 epitope residues distributed in a discontinuous manner throughout the ECD. The major part of the epitope, as revealed after mapping onto the crystal structure model of the ECD molecule, was located on the side and upper portion of domain 1, particularly within the D - E strand disulfide loop 79 - 96. Molecular dynamics docking of an antibody of the same isotype as MAb 263 was used to dock the bivalent antibody to the 1528-Angstrom(2) epitope and to visualize the likely consequences of MAb binding. The minimized model enables the antibody to grasp two receptors in a pincer-like movement from opposite sides, facilitating alignment of the receptor dimerization domains in a manner similar to, but not identical with, GH.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
Diffraction quality crystals are essential for crystallographic studies of protein structure, and the production of poorly diffracting crystals is often regarded as a dead end in the process. Here we show a dramatic improvement of poorly diffracting DsbG crystals allowing high-resolution diffraction data measurement. Before dehydration, the crystals are fragile and the diffraction pattern is streaky, extending to 10 Angstrom resolution. After dehydration, there is a spectacular improvement, with the diffraction pattern extending to 2 Angstrom resolution. This and other recent results show that dehydration is a simple, rapid, and inexpensive approach to convert poor quality crystals into diffraction quality crystals.
Resumo:
The reactions of [ReCl2{eta(2)-N2C(O)Ph}(PPh3)(2)](1) with 2-aminopyrimidine (H(2)Npyrm), 2,2'-bipyridine (bpy) and tetraethylthiuram disulfide (tds), in MeOH upon reflux, lead to the new eta(1)-(benzoyldiazenido)-rhenium(III) complexes [ReCl{eta(1)-N2C(O)Ph}(HNpyrm)(PPh3)(2)](2)and [ReCl2{eta(1)-N2C(O)Ph}(bpy)(PPh3)] (3), and the known oxo(diethyldithiocarbamato)dirhenium(v)complex [Re2O2(mu O){Et2NC(S)S}(4)](4), respectively. The Et2NC(S)S ligands in 4 result from S-S bond rupture of tds molecules. The obtained compounds have been characterized by IR, H-1, P-31{H-1} and C-13{H-1} NMR spectroscopies, FAB(+)-MS, elemental and single-crystal X-ray diffraction (for 2 and 4)analyses. Complex 2 represents the first structurally characterized Re compound derived from 2-aminopyrimidine. Besides, the redox behaviour of 2-4 in CH2Cl2 solution has been studied by cyclic voltammetry, and the Lever electrochemical ligand parameter (E-L)has been estimated, for the first time, for HNpyrm. The electrochemical results are discussed in terms of electronic properties of the Re centres and the ligands.
Resumo:
J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6
Resumo:
J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2
Resumo:
Dissertation for the Master’s Degree in Structural and Functional Biochemistry
Resumo:
Cell-to-cell communication is required for many biological processes in development and adult life. One of the most common systems utilized by a wide range of eukaryotes is the Notch signalling pathway. Four Notch receptors and five ligands have been identified in mammals that interact via their extracellular domains leading to transcription activation. Studies have shown that the Notch ligands expression is undetectable in normal breast tissues, but moderate to high expression has been detected in breast cancer. Thus, any of the Notch1 ligands can be studied as possible therapeutic targets for breast cancer. To study Notch pathway proteins there is the need to obtain stable protein solutions. E. coli is the host of excellence for recombinant proteins for the ease of use, fast growth and high cell densities. However, the expression of mammalian proteins in such systems may overwhelm the bacterial cellular machinery, which does not possess the ability for post-translational modifications, or dedicated compartments for protein synthesis. Mammalian cells are therefore preferred, despite their technical and financial increased demands. We aim to determine the best expression and purification conditions for the different ligand protein constructs, to develop specific function-blocking antibodies using the Phage Display technology. Moreover, we propose to crystallize the Notch1 ligands alone and in complex with the phage display selected antibodies, unveiling molecular details. hJag2DE3 and hDll1DE6 proteins were purified from refolded inclusion bodies or mammalian cell culture supernatants, respectively, and purity was confirmed by SDS-PAGE (>95%). Protein produced in mammalian cells showed to be more stable, apparently with the physiological disulfide pattern, contrary to what was observed in the refolded protein. Several nano-scale crystallization experiments were set up in 96-well plates, but no positive result was obtained. We will continue to pursue for the best expression for the Notch ligand constructs in both expression systems.
Resumo:
INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Resumo:
The chemical structure of lipoprotein (a) is similar to that of LDL, from which it differs due to the presence of apolipoprotein (a) bound to apo B100 via one disulfide bridge. Lipoprotein (a) is synthesized in the liver and its plasma concentration, which can be determined by use of monoclonal antibody-based methods, ranges from < 1 mg to > 1,000 mg/dL. Lipoprotein (a) levels over 20-30 mg/dL are associated with a two-fold risk of developing coronary artery disease. Usually, black subjects have higher lipoprotein (a) levels that, differently from Caucasians and Orientals, are not related to coronary artery disease. However, the risk of black subjects must be considered. Sex and age have little influence on lipoprotein (a) levels. Lipoprotein (a) homology with plasminogen might lead to interference with the fibrinolytic cascade, accounting for an atherogenic mechanism of that lipoprotein. Nevertheless, direct deposition of lipoprotein (a) on arterial wall is also a possible mechanism, lipoprotein (a) being more prone to oxidation than LDL. Most prospective studies have confirmed lipoprotein (a) as a predisposing factor to atherosclerosis. Statin treatment does not lower lipoprotein (a) levels, differently from niacin and ezetimibe, which tend to reduce lipoprotein (a), although confirmation of ezetimibe effects is pending. The reduction in lipoprotein (a) concentrations has not been demonstrated to reduce the risk for coronary artery disease. Whenever higher lipoprotein (a) concentrations are found, and in the absence of more effective and well-tolerated drugs, a more strict and vigorous control of the other coronary artery disease risk factors should be sought.
Resumo:
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.
Resumo:
A preliminary study of the pharmacokinetic parameters of t-Butylaminoethanethiol (TBAESH) was performed after administration of a single dose (35 mg/kg) either orally or intravenously. Plasma or blood samples were treated with dithiothreitol, perchloric acid and, after filtration, submitted to further purification with anionic resin. In the final step the drug was retained on a cationic resin column, eluted with NaCl lM and detected according to the method of Ellman (1958). The results suggested a pharmacokinetic behavior related to a one open compartment model with the following values for the total drug: area under the intravenous curve (AUC i.v.): 443(+ ou -) 24.0; AUC oral: 85.5(+ ou -) 14.5 ug min.ml(elevado a -1); elimination rate constant: 0.069(+ ou -) 0.0055 min(elevado a -1), biological half-life: 10.0(+ ou -) 0.80 min; distribution volume 1.15(+ ou -) 0.15 ml/g; biodisponibility: 0.19(+ ou -) 0.02. From a pharmacokinetic standpoint, TBAESH seems to have no advantage over the analogous disulfide compound.
Resumo:
Unlike other tumor necrosis factor family members, the cytotoxic ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2L contains an unpaired cysteine residue (Cys(230)) in its receptor-binding domain. Here we show that the biological activity of both soluble recombinant TRAIL and cell-associated, full-length TRAIL is critically dependent on the presence of Cys(230). Mutation of Cys(230) to alanine or serine strongly affected its ability to kill target cells. Binding to its receptors was decreased by at least 200-fold, and the stability of its trimeric structure was reduced. In recombinant TRAIL, Cys(230) was found engaged either in interchain disulfide bridge formation, resulting in poorly active TRAIL, or in the chelation of one zinc atom per TRAIL trimer in the active, pro-apoptotic form of TRAIL.