992 resultados para Developments of HCR in the Indian Scenario
Resumo:
A basaltic sequence of Eocene submarine-erupted pyroclastic sediments totals at least 388 m at DSDP Site 253 on the Ninetyeast Ridge. These fossiliferous hyaloclastic sediments have been erupted and fragmented by explosive volcanism (hydroexplosions) in shallow water. The occurrence of interbedded basaltic ash-fall tuffs within the younger horizons of the hyaloclastic sequence marks the emergence of some Ninetyeast Ridge volcanic vents above sea level. Considerable textural variation allows subdivision of the sequence into six informal lithostratigraphic units. Hydrothermal and diagenetic alteration has caused the complete replacement of all original glass by smectites, and the introduction of abundant zeolite and calcite cements. The major and trace element contents of the hyaloclastites vary due to the alteration, and the admixture of biogenous calcite. On a calcium carbonate-free basis systematic variations are recognisable. Mg, Ni, Cr and Cu are enriched, and Li and Zn depleted in the three older units relative to the younger three. The chemical variability is reflected by the development of saponite in the older part of the sequence and montmorillonite in the younger; and by the presence of a quartz-normative basalt flow occurring in Unit II, in contrast to the Mg-rich highly olivine-normative basalt at the base of the sequence. The younger and older parts of the sequence therefore appear to have been derived from magmas of different chemistry. The sequence, like other basaltic rocks recovered from the Ninetyeast Ridge, is enriched in the light relative to the heavy rare earth elements (REE) although the REE contents vary unsystematically with depth, probably because of the high-temperature subaqueous alteration and the presence of biogenous calcite. This REE data indicates that the Ninetyeast Ridge volcanism was different from that which produces mid-ocean ridge basalts.
Resumo:
An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.
Resumo:
Indian Ocean crust formed at Sites 765 and 766 is geochemically comparable to that presently forming in the Red Sea. In both cases, we interpret the crust as reflecting high degrees of mantle melting that are associated with an enhanced thermal gradient below recently rifted continental lithosphere. Asthenospheric melts formed in this environment are rich in CaO and FeO, poor in Na2O and Al2O3, and characterized by depleted rare earth element (REE) profiles ([La/Sm]n approximately 0.5-0.6). Both the Red Sea basalts and the basalts at Sites 765 and 766 are distinct from those erupted at the present Mid-Indian Ocean Ridge. The isotope characteristics of the Site 765 basalts define a geochemical signature similar to that of the present-day Mid-Indian Ocean Ridge basalts (MIORB). The Indian Ocean mantle domain is distinct from that of the Atlantic and Pacific oceans, and this distinction has persisted since Jurassic time, when the Site 765 oceanic crust was formed.
Resumo:
One of the major shipboard findings during Leg 23 drilling in the Red Sea was the presence of late Miocene evaporites at Sites 225, 227, and 228. The top of the evaporite sequence correlates with a strong reflector (Reflector S) which has been mapped over much of the Red Sea (Ross et al., 1969, Phillips and Ross, 1970). This indicates that the Red Sea appears to be extent. Miocene sediments, including evaporites, are known from a few outcrops along the coastal plains of the Gulf of Suez to lat 14°N (Sadek, 1959, cited in Friedman, 1972; Heybroek, 1965; Friedman, 1972). Along the length of the Red Sea, the presence of Miocene salt is indicated by seismic reflection studies (Lowell and Genik, 1972) and confirmed by drilling. The recently published data from deep exploratory wells (Ahmed, 1972) demonstrate the great thickness of elastics and evaporites which were deposited in the Red Sea depression during Miocene time. The Red Sea evaporites are of the same age as the evaporites found by deep sea drilling (DSDP Leg 13) in the Mediterranean Sea. Therefore, Reflector S in the Red Sea is comparable to Reflector M in the Mediterranean. It is assumed that during Miocene time a connection between these two basins was established (Coleman, this volume) resulting in a similar origin for the evaporites deposited in the Red Sea and in the Mediterranean Sea. The origin of the Mediterranean evaporites has been discussed in great detail (Hsü et al., 1973; Nesteroff, 1973; Friedman, 1973). The formation of evaporites may be interpreted by three different hypotheses. 1) Evaporation of a shallow restricted shelf sea or lagoon which receives inflows from the open ocean. 2) Evaporation of a deep-water basin which is separated from the open ocean by a shallow sill (Schmalz, 1969). 3) Evaporation of playas or salt lakes which are situated in desiccated deep basins isolated from the open ocean (Hsü et al., 1973). The purpose of this study is to show whether one of these models might apply to the formation and deposition of the Red Sea evaporites. Therefore, a detailed petrographic and geochemical investigation was carried out.
Resumo:
Intensive reduction processes within bottom sediments from the Bay of Bengal lead to marked enrichment of the oxidized layer in iron and manganese. This is not observed in sediments from the Arabian Sea. Oxidized bottom sediments in central areas of the Indian Ocean show high iron concentrations, but fraction of reactive Fe in total Fe is lower. Manganese concentration increases steadily with distance from the shore to the pelagic region of the ocean, and fraction of reactive manganese also increases in the same direction. There is close correlation between total Mn and Mn(4+) in these sediments.
Resumo:
The present work is based on mineralogical studies of sand and silt layers from a number of Deep Sea Drilling Project sites in the Indian Ocean belonging to different physiographic provinces of different ages. The minerals can be grouped into two major associations: a hornblende-opaque association with varying amounts of pyroxene, garnet, epidote, zircon, etc. and a biotite-chlorite-muscovite assemblage. The dominance of unstable minerals indicates a first generation, though evidence of reworking is reflected in the zircon and tourmaline grains at some sites. A large variety of minerals at some sites indicates a complex source. The mineral composition is nearly homogeneous at different sites for the entire length of the core, indicating that they have been derived from the same source during the deposition of that interval. However, the provenance changed by tectonic activity, the effect of which has been reflected in the mineralogy of some sites. An attempt was made to describe the mineralogic characteristics and their tectonic interpretations in the Pliocene and Miocene periods in the Ganges and Indus fan sites and also in the Wharton and Mozambique basin sites. Similar attempts could not be made for other ages in other physiographic provinces as the numbers of samples were too few. Within the limited scope, some idea about the mineralogical character of different basins and different physiographic provinces can be obtained from the present study. Mineralogical evidence also suggests very long transport of sediments in the deep sea. Regional variation of mineralogy has resulted due to source, sea-floor configuration, selective removal, reworking by different agencies and the processes operating in the ocean. There is no relation between a particular age and a set mineral assemblage for the Cenozoic sediments of the Indian Ocean.