730 resultados para Delivery device
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. In this paper we study several approaches to adapt the learning content to mobile phones. We present an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
A double pi'npin heterostructure based on amorphous SiC has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. An impulse of a configurable length and amplitude is applied to a 390 nm LED which illuminates one of the sensor surfaces, followed by a time period without any illumination after which an input signal with a different wavelength is impinged upon the front surface. Results show that the intensity and duration of the impulse illumination of the surfaces influences the sensor's response with different output for the same input signal. This paper studies this effect and proposes an application as a short term light memory. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper we exploit the nonlinear property of the SiC multilayer devices to design an optical processor for error detection that enables reliable delivery of spectral data of four-wave mixing over unreliable communication channels. The SiC optical processor is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Visible pulsed signals are transmitted together at different bit sequences. The combined optical signal is analyzed. Data show that the background acts as selector that picks one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as EXOR and three bit addition are demonstrated optically, showing that when one or all of the inputs are present, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed using four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all-optical processor for error detection and then provide an experimental demonstration of this idea. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. This paper studies several approaches to adapt the learning content to mobile phones. It presents an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
The objective of the present study was to estimate the prevalence of herpes simplex virus type 2 (HSV 2) antibodies in child bearing women of 2 Brazilian populations with different socioeconomic status and to determine the risk of neonatal HSV exposure by means of maternal cultures at the onset of labor. The study was conducted at 2 hospitals: A, serving very low income patients and B, serving middle socioeconomic class. 173 participants from group A and 127 from B answered a questionnaire which showed that the patients had similar ages (27.7 and 26.8 years, respectively) but differed with regard to socioeconomic status, age at first intercourse (18.6 vs 20.6 years), number of sex partners (1.5 vs 1.2) and previous sexually transmitted diseases (15% vs. 1.5%). History of genital herpes was given by 11% of group A participants and by a similar number, 7%, of patients from group B. In addition, 200 serum samples from population A and 455 from B were tested by ELISA for and HSV antibodies and 92% and 86%, respectively, were found to be positive. Sixty seropositive samples from group A and 90 from B were further analyzed by Western blot, which showed the presence of type 2 specific antibodies in 46% and 36%, respectively, suggesting an overall HSV 2 prevalence of 42% in group A and 31% in B. Cervical specimens were obtained for culture from 299 asymptomatic patients of population A and 313 of B. HSV was isolated from one specimen in each group, indicating a 0.3% incidence of asymptomatic viral excretion in both populations. In conclusion, the prevalence of type 2 antibodies in childbearing women was very high, but it did not differ with the socioeconomic status. The risk of HSV perinatal transmission was also similar in the 2 study populations and it was comparable with the data from developed countries. Our findings do not indicate the need of special screening programs for asymptomatic HSV excretion in Brazilian pregnant women.
Resumo:
The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.
Resumo:
Develop a client-server application for a mobile environment can bring many challenges because of the mobile devices limitations. So, in this paper is discussed what can be the more reliable way to exchange information between a server and an Android mobile application, since it is important for users to have an application that really works in a responsive way and preferably without any errors. In this discussion two data transfer protocols (Socket and HTTP) and three serialization data formats (XML, JSON and Protocol Buffers) were tested using some metrics to evaluate which is the most practical and fast to use.
Resumo:
Experimental optoelectronic characterization of a p-i'(a-SiC:H)-n/pi(a-Si:H)-n heterostructure with low conductivity doped layers shows the feasibility of tailoring channel bandwidth and wavelength by optical bias through back and front side illumination. Front background enhances light-to-dark sensitivity of the long and medium wavelength range, and strongly quenches the others. Back violet background enhances the magnitude in short wavelength range and reduces the others. Experiments have three distinct programmed time slots: control, hibernation and data. Throughout the control time slot steady light wavelengths illuminate either or both sides of the device, followed by the hibernation without any background illumination. The third time slot allows a programmable sequence of different wavelengths with an impulse frequency of 6000Hz to shine upon the sensor. Results show that the control time slot illumination has an influence on the data time slot which is used as a volatile memory with the set, reset logical functions. © IFIP International Federation for Information Processing 2015.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica Especialização em Concepção e Produção
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.
Resumo:
A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.
Resumo:
Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.
Resumo:
Poster presented in Redes de Veiculos nas sociedades do futuro (RVSF 2015). 3, Jun, 2015. Castelo Branco, Portugal.
Resumo:
Master Thesis