997 resultados para Decomposition framework
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
The need for better adaptation of networks to transported flows has led to research on new approaches such as content aware networks and network aware applications. In parallel, recent developments of multimedia and content oriented services and applications such as IPTV, video streaming, video on demand, and Internet TV reinforced interest in multicast technologies. IP multicast has not been widely deployed due to interdomain and QoS support problems; therefore, alternative solutions have been investigated. This article proposes a management driven hybrid multicast solution that is multi-domain and media oriented, and combines overlay multicast, IP multicast, and P2P. The architecture is developed in a content aware network and network aware application environment, based on light network virtualization. The multicast trees can be seen as parallel virtual content aware networks, spanning a single or multiple IP domains, customized to the type of content to be transported while fulfilling the quality of service requirements of the service provider.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
The CotA laccase-catalysed oxidation of the meta, para-disubstituted arylamine 2,4-diaminophenyldiamine delivers, under mild reaction conditions, a benzocarbazole derivative (1) (74% yield), a key structural motif of a diverse range of applications. This work extends the scope of aromatic frameworks obtained using these enzymes and represents a new efficient and clean method to construct in one step C-C and C-N bonds.
Resumo:
We investigate the origin of ferromagnetism induced in thin-film (similar to 20 nm) Fe-V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (similar to 10(3) s) thermal annealing. However, the laser action provides much higher diffusion coefficients (similar to 4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe. 2014 Elsevier B.V. All rights reserved.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The purpose of this paper is to present a framework that increases knowledge sharing and collaboration in Higher Education Institutions. The paper discusses the concept of knowledge management in higher education institutions, presenting a systematization of knowledge practices and tools to linking people (students, teachers, researchers, secretariat staff, external entities)and promoting the knowledge sharing across several key processes and services in a higher education institution, such as: the research processes, learning processes, student and alumni services, administrative services and processes, and strategic planning and management. The framework purposed in this paper aims to improve knowledge practices and processes which facilitate an environment and a culture of knowledge collaboration,sharing and discovery that should characterize an institution of higher education.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
Atualmente, verifica-se um aumento na necessidade de software feito à medida do cliente, que se consiga adaptar de forma rápida as constantes mudanças da sua área de negócio. Cada cliente tem os seus problemas concretos que precisa de resolver, não lhe sendo muitas vezes possível dispensar uma elevada quantidade de recursos para atingir os fins pretendidos. De forma a dar resposta a estes problemas surgiram várias arquiteturas e metodologias de desenvolvimento de software, que permitem o desenvolvimento ágil de aplicações altamente configuráveis, que podem ser personalizadas por qualquer utilizador das mesmas. Este dinamismo, trazido para as aplicações sobre a forma de modelos que são personalizados pelos utilizadores e interpretados por uma plataforma genérica, cria maiores desafios no momento de realizar testes, visto existir um número de variáveis consideravelmente maior que numa aplicação com uma arquitetura tradicional. É necessário, em todos os momentos, garantir a integridade de todos os modelos, bem como da plataforma responsável pela sua interpretação, sem ser necessário o desenvolvimento constante de aplicações para suportar os testes sobre os diferentes modelos. Esta tese debruça-se sobre uma aplicação, a plataforma myMIS, que permite a interpretação de modelos orientados à gestão, escritos numa linguagem específica de domínio, sendo realizada a avaliação do estado atual e definida uma proposta de práticas de testes a aplicar no desenvolvimento da mesma. A proposta resultante desta tese permitiu verificar que, apesar das dificuldades inerentes à arquitetura da aplicação, o desenvolvimento de testes de uma forma genérica é possível, podendo as mesmas lógicas ser utilizadas para o teste de diversos modelos distintos.
Resumo:
Os videojogos são cada vez mais uma das maiores áreas da indústria de entretenimento, tendo esta vindo a expandir-se de ano para ano. Para além disso, os videojogos estão cada vez mais presentes no nosso dia-adia, quer através dos dispositivos móveis ou das novas consolas. Com base nesta premissa, é seguro de afirmar que o investimento neste campo trará mais ganhos do que perdas. Esta Dissertação tem como objetivo o estudo do estado da indústria dos videojogos, tendo como principal foco a conceção de um videojogo, a partir duma Framework Modular, desenvolvida também no âmbito desta Dissertação. Para isso, é feito um estudo sobre o estado da arte tecnológico, onde várias ferramentas de criação de videojogos foram estudadas e analisadas, de forma a perceber as forças e fraquezas de cada uma, e um estudo sobre a arte do negócio, ficando assim com uma ideia mais concreta dos vários pontos necessários para a criação de um videojogo. De seguida são discutidos os diferentes géneros de videojogos existentes e é conceptualizado um pequeno videojogo, tendo ainda em conta os diferentes tipos de interfaces que são mais utilizados na indústria dos videojogos, de forma a entender qual será a forma mais viável, conforme o género, e as diferentes mecânicas presentes no videojogo a criar. A Framework Modular é desenvolvida tendo em conta toda a análise previamente realizada, e o videojogo conceptualizado. Esta tem como grande objetivo uma elevada personalização e manutenibilidade, sendo que todos os módulos implementados podem ser substituídos por outros sem criar conflitos entre si. Finalmente, de forma a unir todos os temas analisados ao longo desta Dissertação, é ainda desenvolvido um Protótipo de forma a comprovar o bom funcionamento da Framework, aplicando todas as decisões previamente feitas.
Resumo:
We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.