989 resultados para Dead Sea Scrolls. 1Q20
Resumo:
1. On the cruises 3 and 15 of R.V. "Meteor" 6 grab samples, and 6 hauls with the 6 m Agassiztrawl were taken and at 2 stations the deep sea camera was lowered. This material gave quantitative results on the meiofauna and minimum counts of the macrofauna. 2. The nematodes constitute nearly 95% of the meiofauna, the copepoda only 2%. With increasing sediment depth the density of animals decrease gradually. In the uppermost centimeter of sediment 42.6% of the meiofauna are found while only 3.7% live in layer 6-7 cm. Meiofauna weight ranges from 0.6-5.7 mg/25 m**2 surface i.e. 0.24-2.8 g/m**2. 3. Mean numbers of individuals and weights show standard errors of 20-30 %. As an approximate average values for further considerations the weight of the meiofauna in the area was taken as 1 g/m**2 4. Quantitative information on the macrofauna is derived from the trawls and the photographs for the actinia Chitonanthus abyssorum only, which is found in the rate of 1 individual/36-72 m**2, but seems to be less abundant generally. 5. Animal density does not decrease steadily from nearshore to offshore biocoenoses, i.e. generally with increasing depth. The decrease is more pronounced for macro- than for meiofauna. For the deep sea the weight proportion of macrofauna : meiofauna is of the order of 1 : 1. 6. With the assumption, that adaptation of metabolism to deep sea conditions is similar in macro- and meiofauna total metabolism of invertebrates is ascribed to meiofauna to more than 80%. 7. The structure of the biocoenosis of the deep sea floor is characterized by the meiofauna living on and in the sediment and by the dominance of sediment feeders in the macrofauna. 8. Considering the large numbets and high partition rates of bacteria a comparative large part of the metabolism in the deep sea sediment must be ascribed to bacteria. This favours the hypothesis, that with increasing depth and decreasing addition of organic material to the sediment, the importance of meiofauna and microorganisms for total metabolism increases. 9. Considering the different modes of food transport to the deep sea environment, i.e. sinking of dead particles, transport by vertical migration of organisms, aggregation of organic particles, adsorption of dissoloved organic substance to inorganic particles, and heterotrophy, the sediment may be assumed to contain more food for invertebrates than the water above the bottom. 10. Suspensions feeders of macrofauna are fixed to hard substrates in the sediment surface. Some of them are shown to bend themselves down to the bottom in underwater photographs. This suggests the idea that some deep sea suspension feeders partly depend on food from the sediment surface, on which they feed directly.
Resumo:
Talk is the foundation for thought and understanding, and the key to literacy learning. Research demonstrates that powerful meta-cognitive strategies can be taught to help students self-monitor their comprehension when reading print and digital texts. This paper provides a repertoire of motivating speaking and listening tips to develop the meta-cognitive thinking of students in the elementary years.
Resumo:
Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200°C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 secs to 24 hrs) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can’t necessarily be applied on a regional or global ocean scale. Nevertheless, considering the order of magnitude discrepancy between this and previous studies, further research with independent measurement techniques and a variety of different seawaters is required to better quantify how much organic material is present in accumulation mode SSA.
Resumo:
The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.
Resumo:
THEATRE: The New Dead: Medea Material. By Heiner Muller. Stella Electrika in association with La Boite Theatre Company, Brisbane, November 19. THERE has been a lot of intensity in independent theatre in Brisbane during the past year, as companies, production houses and producers have begun building new programs and platforms to support an expansion of pathways within the local theatre ecology. Audiences have been exposed to works signalling the diversity of what Brisbane theatre makers want to see on stage, from productions of new local and international pieces to new devised works, and the results of residencies and development programs. La Boite Theatre Company closes its inaugural indie season with a work that places it at the contemporary, experimental end of the spectrum. The New Dead: Medea Material is emerging director Kat Henry's interpretation of Heiner Muller's 1981 text Despoiled Shore Medea Material Landscape with Argonauts. Start of sidebar. Skip to end of sidebar. End of sidebar. Return to start of sidebar. Muller is known for his radical adaptations of historical dramas, from the Greeks to Shakespeare, and for deconstructed texts in which the characters - in this case, Medea - violently reject the familial, cultural and political roles society has laid out for them. Muller's combination of deconstructed characters, disconnected poetic language and constant references to aspects of popular culture and the Cold War politics he sought to abjure make his texts challenging to realise. The poetry entices but the density, together with the increasing distance of the Cold War politics in the texts, leaves contemporary directors with clear decisions to make about how to adapt these open texts. In The New Dead: Medea Material, Henry works with some interesting imagery and conceptual territory. Lucinda Shaw as Medea, Guy Webster as Jason and Kimie Tsukakoshi as King Creon's daughter Glauce, the woman for whom Jason forsakes his wife Medea, each reference different aspects of contemporary culture. Medea is a bitter, drunken, satin-gowned diva with bite; Jason - first seen lounging in front of the television with a beer in an image reminiscent of Sarah Kane's in-yer-face characterisation of Hippolytus in Phaedra's Love - has something of the rock star about him; and Glauce is a roller-skating, karaoke-singing, pole-dancing young temptress. The production is given a contemporary tone, dominated by Medea's twisted love and loss, rather than by any commentary on her circumstances. Its strength is the aesthetic Henry creates, supported by live electro-pop music, a band stage that stands as a metaphor for Jason's sea voyage, and multimedia that inserts images of the story unfolding beyond these characters' speeches as sorts of subconscious flashes. While Tsukakoshi is engaging throughout, there are moments when Shaw and Webster's performances - particularly in the songs - are diminished by a lack of clarity. The result is a piece that, while slightly lacking in its realisation at times, undoubtedly flags Henry's facility as an emerging director and what she wants to bring to the Brisbane theatre scene.
Resumo:
Often identified as the origin of today’s children’s literature, Romanticism offers a particular context for interrogating boundaries between child and adult. Since the turn of the nineteenth century, however, Western society has “invented” the teenager to figure and to police the boundary between childhood and adulthood. In due course, twenty-first-century young adult (YA) novels such as Susan Davis’s Mad, Bad and Totally Dangerous (2004) and Cara Lockwood’s Wuthering High: A Bard Academy Novel (2006) have combined the Romantic and the adolescent in narratives which turn on supernatural invocation of Romantic authors as “really” present in contemporary adolescent lives. These novels tell stories of adolescence in which the self comes to be known via embodied encounters with dead authors, in particular, with Byron. Where “Byron scholarship has worked hard to disassociate the poet from this kind of pop-Gothic depiction, seeing it as the inevitable but regrettable offspring of nineteenth-century Byromania” (McDayter 30), contemporary YA fiction suggests that it is precisely via pop-Gothic depictions that today’s adolescents may first come to know the Romantic in general and the Byronic in particular. This paper reads these novels in the context of current anxieties about cultural illiteracy and educational “failure” in order to consider what work is being undertaken in the name of Byron, and to shed light on the ways in which cultural education may be taking place far beyond the realms of schools or cemeteries for today’s young readers.
Resumo:
Background: Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems.----- ----- Methodology/Principal Findings: Here we develop the first prioritization approach that can guide regional-scale conservation investments in land-and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria.----- ----- Conclusions/Significance: Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.
Resumo:
Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.