952 resultados para Data-stream balancing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In different regions of Brazil, population growth and economic development can degrade water quality, compromising watershed health and human supply. Because of its ability to combine spatial and temporal data in the same environment and to create water resources management (WRM) models, the Geographical Information System (GIS) is a powerful tool for managing water resources, preventing floods and estimating water supply. This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of the Paraíba do Sul Basin (Sao Paulo State portion), situated in the Southeast of Brazil. The case study presented in this paper has a database suitable for the basin's dimensions, including digitized topographic maps at a 50,000 scale. From an ArcGIS®/ArcHydro Framework Data Model, a geometric network was created to produce different raster products. This first grid derived from the digital elevation model grid (DEM) is the flow direction map followed by flow accumulation, stream and catchment maps. The next steps in this research are to include the different multipurpose reservoirs situated along the Paraíba do Sul River and to incorporate rainfall time series data in ArcHydro to build a hydrologic data model within a GIS environment in order to produce a comprehensive spatial-temporal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: In this study, we evaluated and compared community attributes from a tropical deforested stream, located in a pasture area, in a period before (PRED I) and three times after (POSD I, II, and III) a flash flood, in order to investigate the existence of temporal modifications in community structure that suggests return to conditions previous to the flash flood. METHODS: Biota samples included algae, macrophytes, macroinvertebrates, and fish assemblages. Changes in stream physical structure we also evaluated. Similarity of the aquatic biota between pre and post-disturbance periods was examined by exploratory ordination, known as Non-Metric Multidimensional Scaling associated with Cluster Analysis, using quantitative and presence/absence Bray-Curtis similarity coefficients. Presence and absence data were used for multivariate correlation analysis (Relate Analysis) in order to investigate taxonomic composition similarity of biota between pre and post-disturbance periods. RESULTS: Our results evidenced channel simplification and an expressive decrease in richness and abundance of all taxa right after the flood, followed by subsequent increases of these parameters in the next three samples, indicating trends towards stream community recovery. Bray-Curtis similarity coefficients evidenced a greater community structure disparity among the period right after the flood and the subsequent ones. Multivariate correlation analysis evidenced a greater correlation between macroinvertebrates and algae/macrophytes, demonstrating the narrow relation between their recolonization dynamics. CONCLUSIONS: Despite overall community structure tended to return to previous conditions, recolonization after the flood was much slower than that reported in literature. Finally, the remarkably high flood impact along with the slow recolonization could be a result of the historical presence of anthropic impacts in the region, such as siltation, riparian forest complete depletion, and habitat simplification, which magnified the effects of a natural disturbance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta diversity, the spatial or temporal variability of species composition, is a key concept in community ecology. However, our ability to predict the relative importance of the main drivers of beta diversity (e. g., environmental heterogeneity, dispersal limitation, and environmental productivity) remains limited. Using a comprehensive data set on stream invertebrate assemblages across the continental United States, we found a hump-shaped relationship between beta diversity and within-ecoregion nutrient concentrations. Within-ecoregion compositional dissimilarity matrices were mainly related to environmental distances in most of the 30 ecoregions analyzed, suggesting a stronger role for species-sorting than for spatial processes. The strength of these relationships varied considerably among ecoregions, but they were unrelated to within-ecoregion environmental heterogeneity or spatial extent. Instead, we detected a negative correlation between the strength of species sorting and nutrient concentrations. We suggest that eutrophication is a major mechanism disassembling invertebrate assemblages in streams at a continental scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The next-generation SONET metro network is evolving into a service-rich infrastructure. At the edge of such a network, multi-service provisioning platforms (MSPPs) provide efficient data mapping enabled by Generic Framing Procedure (GFP) and Virtual Concatenation (VC). The core of the network tends to be a meshed architecture equipped with Multi-Service Switches (MSSs). In the context of these emerging technologies, we propose a load-balancing spare capacity reallocation approach to improve network utilization in the next-generation SONET metro networks. Using our approach, carriers can postpone network upgrades, resulting in increased revenue with reduced capital expenditures (CAPEX). For the first time, we consider the spare capacity reallocation problem from a capacity upgrade and network planning perspective. Our approach can operate in the context of shared-path protection (with backup multiplexing) because it reallocates spare capacity without disrupting working services. Unlike previous spare capacity reallocation approaches which aim at minimizing total spare capacity, our load-balancing approach minimizes the network load vector (NLV), which is a novel metric that reflects the network load distribution. Because NLV takes into consideration both uniform and non-uniform link capacity distribution, our approach can benefit both uniform and non-uniform networks. We develop a greedy loadbalancing spare capacity reallocation (GLB-SCR) heuristic algorithm to implement this approach. Our experimental results show that GLB-SCR outperforms a previously proposed algorithm (SSR) in terms of established connection capacity and total network capacity in both uniform and non-uniform networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment—elevated concentrations of nitrogen and phosphorus— in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic exercise training (ET) lowers hypertension and improves patient outcomes in cardiovascular disease. The mechanisms of these effects are largely unknown. We hypothesized that ET modulates microRNAs (miRNAs) involved in vascularization. miRNA-16 regulates the expression of vascular endothelial growth factor and antiapoptotic protein Bcl-2. miRNA-21 targets Bcl-2. miRNA-126 functions by repressing regulators of the vascular endothelial growth factor pathway. We investigated whether miRNA-16, -21 and -126 are modulated in hypertension and by ET. Twelve-week-old male spontaneously hypertensive rats (SHRs; n=14) and Wistar Kyoto (WKY; n=14) rats were assigned to 4 groups: SHRs, trained SHRs (SHR-T), Wistar Kyoto rats, and trained Wistar Kyoto rats. ET consisted of 10 weeks of swimming. ET reduced blood pressure and heart rate in SHR-Ts. ET repaired the slow-to-fast fiber type transition in soleus muscle and the capillary rarefaction in SHR-Ts. Soleus miRNA-16 and -21 levels increased in SHRs paralleled with a decrease of 48% and 25% in vascular endothelial growth factor and Bcl-2 protein levels, respectively. Hypertension increased Bad and decreased Bcl-x and endothelial NO synthase levels and lowered p-Bad(ser112): Bad ratio. ET in SHR-Ts reduced miRNA-16 and -21 levels and elevated vascular endothelial growth factor and Bcl-2 levels. ET restored soleus endothelial NO synthase levels plus proapoptotic and antiapoptotic mediators in SHR-Ts, indicating that the balance between angiogenic and apoptotic factors may prevent microvascular abnormalities in hypertension. miRNA-126 levels were reduced in SHRs with an increase of 51% in phosphoinositol-3 kinase regulatory subunit 2 expression but normalized in SHR-Ts. Our data show that ET promoted peripheral revascularization in hypertension, which could be associated with regulation of select miRNAs, suggesting a mechanism for its potential therapeutic application in vascular diseases. (Hypertension. 2012;59[part 2]:513-520.). Online Data Supplement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ÈN]A trans-oceanic section at 24.5°N in the North Atlantic has been sampled at a decadal frequency. This work demonstrates that the wind-driven component of the Meridional Overturning Circulation (MOC) may be monitored using autonomous profiling floats deployed in the eastern North Atlantic Subtropical Gyre. More than 500 CTD vertical profiles from the surface to 2000 m depth, spanning one year (from April 2002 to March 2003), are used to compute the geostrophic transport stream function at 24.5°N. The baroclinic transport obtained from the autonomous profiling floats is not statistically different than that from three hydrographic cruises carried out in 1957, 1981 and 1992. A good agreement is found between the geostrophic transport stream function and the transport derived from the wind field through the Sverdrup relation.