915 resultados para Data reporting
Resumo:
In New World primates, mixed-species troops have been reported. Here, we analysed the performance of affiliative and agonistic behaviours of Callithrix jacchus and Callithrix penicillata living in mixed groups. For this purpose, we recorded the interaction of the individuals from two groups located in Bauru city, in the state of Sao Paulo (Brazil). Our data show that in both groups, affiliative behaviours appeared more frequently than agonistic ones. We concluded that there is cohesion inside the mixed-species troops observed. We suggest that a deeper knowledge about the social behaviour of mixed-species troop species certainly may be useful in projects linked with the management of the impact caused by them.
Resumo:
Spontaneous adverse drug events (ADE) reporting is the main source of data for assessing the risk/benefit of drugs available in the pharmaceutical market. However, its major limitation is underreporting, which hinders and delays the signal detection by Pharmacovigilance (PhV). To identify the techniques of educational intervention (EI) for promotion of PhV by health professionals and to assess their impact. A systematic review was performed in the PUBMED, PAHO, LILACS and EMBASE databases, from November/2011 to January/2012, updated in March/2013. The strategy search included the use of health descriptors and a manual search in the references cited by selected papers. 101 articles were identified, of which 16 met the inclusion criteria. Most of these studies (10) were conducted in European hospitals and physicians were the health professionals subjected to most EI (12), these studies lasted from one month to two years. EI with multifaceted techniques raised the absolute number, the rate of reporting related to adverse drug reactions (ADR), technical defects of health technologies, and also promoted an improvement in the quality of reports, since there was increased reporting of ADR classified as serious, unexpected, related to new drugs and with high degree of causality. Multifaceted educational interventions for multidisciplinary health teams working at all healthcare levels, with sufficient duration to reach all professionals who act in the institution, including issues related to medication errors and therapeutic ineffectiveness, must be validated, with the aim of standardizing the Good Practice of PhV and improve drug safety indicators.
Resumo:
The purpose of this study was to search the orthodontic literature and determine the frequency of reporting of confidence intervals (CIs) in orthodontic journals with an impact factor. The six latest issues of the American Journal of Orthodontics and Dentofacial Orthopedics, the European Journal of Orthodontics, and the Angle Orthodontist were hand searched and the reporting of CIs, P values, and implementation of univariate or multivariate statistical analyses were recorded. Additionally, studies were classified according to the type/design as cross-sectional, case-control, cohort, and clinical trials, and according to the subject of the study as growth/genetics, behaviour/psychology, diagnosis/treatment, and biomaterials/biomechanics. The data were analyzed using descriptive statistics followed by univariate examination of statistical associations, logistic regression, and multivariate modelling. CI reporting was very limited and was recorded in only 6 per cent of the included published studies. CI reporting was independent of journal, study area, and design. Studies that used multivariate statistical analyses had a higher probability of reporting CIs compared with those using univariate statistical analyses. Misunderstanding of the use of P values and CIs may have important implications in implementation of research findings in clinical practice.
Resumo:
OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.
Resumo:
BACKGROUND: Interaction refers to the situation in which the effect of 1 exposure on an outcome differs across strata of another exposure. We did a survey of epidemiologic studies published in leading journals to examine how interaction is assessed and reported. METHODS: We selected 150 case-control and 75 cohort studies published between May 2001 and May 2007 in leading general medicine, epidemiology, and clinical specialist journals. Two reviewers independently extracted data on study characteristics. RESULTS: Of the 225 studies, 138 (61%) addressed interaction. Among these, 25 (18%) presented no data or only a P value or a statement of statistical significance; 40 (29%) presented stratum-specific effect estimates but no meaningful comparison of these estimates; and 58 (42%) presented stratum-specific estimates and appropriate tests for interaction. Fifteen articles (11%) presented the individual effects of both exposures and also their joint effect or a product term, providing sufficient information to interpret interaction on an additive and multiplicative scale. Reporting was poorest in articles published in clinical specialist articles and most adequate in articles published in general medicine journals, with epidemiology journals in an intermediate position. CONCLUSIONS: A majority of articles reporting cohort and case-control studies address possible interactions between exposures. However, in about half of these, the information provided was unsatisfactory, and only 1 in 10 studies reported data that allowed readers to interpret interaction effects on an additive and multiplicative scale.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
OBJECTIVES Abstracts of systematic reviews are of critical importance, as consumers of research often do not access the full text. This study aimed to assess the reporting quality of systematic review (SR) abstracts in leading oral implantology journals. METHODS Six specialty journals were screened for SRs between 2008 and 2012. A 16-item checklist, based on the PRISMA statement, was used to examine the completeness of abstract reporting. RESULTS Ninety-three SR abstracts were included in this study. The majority were published in Clinical Oral Implants Research (43%). The mean overall reporting quality score was 72.5% (95% CI: 70.8-74.2). Most abstracts were structured (97.9%), adequately reporting objectives (97.9%) and conclusions (93.6%). Conversely, inadequate reporting of methods of the study, background (79.6%), appraisal (65.6%), and data synthesis (65.6%) were observed. Registration of reviews was not reported in any of the included abstracts. Multivariate analysis revealed no difference in reporting quality with respect to continent, number of authors, or meta-analysis conduct. CONCLUSIONS The results of this study suggest that the reporting quality of systematic review abstracts in implantology journals requires further improvement. CLINICAL SIGNIFICANCE Better reporting of SR abstracts is particularly important in ensuring the reliability of research findings, ultimately promoting the practice of evidence-based dentistry. Optimal reporting of SR abstracts should be encouraged, preferably by endorsing the PRISMA for abstracts guidelines.
Resumo:
The aim of this study was to investigate the reporting completeness of systematic review (SR) abstracts in leading dental specialty journals. Electronic and supplementary hand searching were undertaken to identify SRs published in seven dental specialty journals and in the Cochrane Database of Systematic Reviews. Abstract reporting completeness was evaluated using a checklist derived from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (prisma) guidelines. Descriptive statistics followed by univariate and multivariate analyses were conducted. Two-hundred and eighteen SR abstracts were identified. Reporting of interventions (94%), objectives (96%), data sources (81%), eligibility criteria (77%), and conclusions (97%) was adequate in the majority of reviews. However, inadequate reporting of participants (18%), results (42%), effect size (14%), level of significance (60%), and trial registration (100%) was commonplace. The mean overall reporting score was 79.1% (95% CI, 77.6-80.6). Only journal of publication was a significant predictor of overall reporting, with inferior results for all journals relative to Cochrane reviews, with scores ranging from -4.3% (95% CI, -8.74 to 0.08) to -35.6% (95% CI, -42.0 to -24.3) for the International Journal of Prosthodontics and the British Journal of Oral and Maxillofacial Surgery, respectively. Improved reporting of dental SR abstracts is needed and should be encouraged, as these abstracts may underpin influential clinical decisions.
Resumo:
Cluster randomized trials (CRTs) use as the unit of randomization clusters, which are usually defined as a collection of individuals sharing some common characteristics. Common examples of clusters include entire dental practices, hospitals, schools, school classes, villages, and towns. Additionally, several measurements (repeated measurements) taken on the same individual at different time points are also considered to be clusters. In dentistry, CRTs are applicable as patients may be treated as clusters containing several individual teeth. CRTs require certain methodological procedures during sample calculation, randomization, data analysis, and reporting, which are often ignored in dental research publications. In general, due to similarity of the observations within clusters, each individual within a cluster provides less information compared with an individual in a non-clustered trial. Therefore, clustered designs require larger sample sizes compared with non-clustered randomized designs, and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this article to highlight with relevant examples the important methodological characteristics of cluster randomized designs as they may be applied in orthodontics and to explain the problems that may arise if clustered observations are erroneously treated and analysed as independent (non-clustered).