826 resultados para Data mining models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]En este artículo se describe la experiencia de la aplicación de técnicas de EDM (clustering) a un curso disponible en la plataforma Ude@ de la Universidad de Antioquia. El objetivo es clasificar los patrones de interacción de los estudiantes a partir de la información almacenada en la base de datos de la plataforma Moodle. Para ello, se generan informes sobre el uso de los recursos y la autoevaluación que permiten analizar el comportamiento y los patrones de navegación de los estudiantes durante el uso del LMS (Learning Management System).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il trauma cranico é tra le piú importanti patologie traumatiche. Ogni anno 250 pazienti ogni 100.000 abitanti vengono ricoverati in Italia per un trauma cranico. La mortalitá é di circa 17 casi per 100.000 abitanti per anno. L’Italia si trova in piena “media” Europea considerando l’incidenza media in Europa di 232 casi per 100.000 abitanti ed una mortalitá di 15 casi per 100.000 abitanti. Degli studi hanno indicato come una terapia anticoagulante é uno dei principali fattori di rischio di evolutiviá di una lesione emorragica. Al contrario della terapia anticoagulante, il rischio emorragico correlato ad una terapia antiaggregante é a tutt’oggi ancora in fase di verifica. Il problema risulta rilevante in particolare nella popolazione occidentale in quanto l’impiego degli antiaggreganti é progressivamente sempre piú diffuso. Questo per la politica di prevenzione sostenuta dalle linee guida nazionali e internazionali in termini di prevenzione del rischio cardiovascolare, in particolare nelle fasce di popolazione di etá piú avanzata. Per la prima volta, é stato dimostrato all’ospedale di Forlí[1], su una casistica sufficientemente ampia, che la terapia cronica con antiaggreganti, per la preven- zione del rischio cardiovascolare, puó rivelarsi un significativo fattore di rischio di complicanze emorragiche in un soggetto con trauma cranico, anche di grado lieve. L’ospedale per approfondire e convalidare i risultati della ricerca ha condotto, nell’anno 2009, una nuova indagine. La nuova indagine ha coinvolto oltre l’ospedale di Forlí altri trentuno centri ospedalieri italiani. Questo lavoro di ricerca vuole, insieme ai ricercatori dell’ospedale di Forlí, verificare: “se una terapia con antiaggreganti influenzi l’evolutivitá, in senso peggiorativo, di una lesione emorragica conseguente a trauma cranico lieve - moderato - severo in un soggetto adulto”, grazie ai dati raccolti dai centri ospedalieri nel 2009. Il documento é strutturato in due parti. La prima parte piú teorica, vuole fissare i concetti chiave riguardanti il contesto della ricerca e la metodologia usata per analizzare i dati. Mentre, la seconda parte piú pratica, vuole illustrare il lavoro fatto per rispondere al quesito della ricerca. La prima parte é composta da due capitoli, che sono: • Il capitolo 1: dove sono descritti i seguenti concetti: cos’é un trauma cra- nico, cos’é un farmaco di tipo anticoagulante e cos’é un farmaco di tipo antiaggregante; • Il capitolo 2: dove é descritto cos’é il Data Mining e quali tecniche sono state usate per analizzare i dati. La seconda parte é composta da quattro capitoli, che sono: • Il capitolo 3: dove sono state descritte: la struttura dei dati raccolti dai trentadue centri ospedalieri, la fase di pre-processing e trasformazione dei dati. Inoltre in questo capitolo sono descritti anche gli strumenti utilizzati per analizzare i dati; • Il capitolo 4: dove é stato descritto come é stata eseguita l’analisi esplorativa dei dati. • Il capitolo 5: dove sono descritte le analisi svolte sui dati e soprattutto i risultati che le analisi, grazie alle tecniche di Data Mining, hanno prodotto per rispondere al quesito della ricerca; • Il capitolo 6: dove sono descritte le conclusioni della ricerca. Per una maggiore comprensione del lavoro sono state aggiunte due appendici. La prima tratta del software per data mining Weka, utilizzato per effettuare le analisi. Mentre, la seconda tratta dell’implementazione dei metodi per la creazione degli alberi decisionali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il citofluorimetro è uno strumento impiegato in biologia genetica per analizzare dei campioni cellulari: esso, analizza individualmente le cellule contenute in un campione ed estrae, per ciascuna cellula, una serie di proprietà fisiche, feature, che la descrivono. L’obiettivo di questo lavoro è mettere a punto una metodologia integrata che utilizzi tali informazioni modellando, automatizzando ed estendendo alcune procedure che vengono eseguite oggi manualmente dagli esperti del dominio nell’analisi di alcuni parametri dell’eiaculato. Questo richiede lo sviluppo di tecniche biochimiche per la marcatura delle cellule e tecniche informatiche per analizzare il dato. Il primo passo prevede la realizzazione di un classificatore che, sulla base delle feature delle cellule, classifichi e quindi consenta di isolare le cellule di interesse per un particolare esame. Il secondo prevede l'analisi delle cellule di interesse, estraendo delle feature aggregate che possono essere indicatrici di certe patologie. Il requisito è la generazione di un report esplicativo che illustri, nella maniera più opportuna, le conclusioni raggiunte e che possa fungere da sistema di supporto alle decisioni del medico/biologo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coniato negli anni‘90 il termine indica lo scavare tra i dati con chiara metafora del gold mining, ossia la ricerca dell’oro. Oggi è sinonimo di ricerca di informazione in vasti database, ed enfatizza il processo di analisi all’interno dei dati in alternativa all’uso di specifici metodi di analisi. Il data mining è una serie di metodi e tecniche usate per esplorare e analizzare grandi set di dati, in modo da trovare alcune regole sconosciute o nascoste, associazioni o tendenze.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analisi e applicazione dei processi di data mining al flusso informativo di sistemi real-time. Implementazione e analisi di un algoritmo autoadattivo per la ricerca di frequent patterns su macchine automatiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi da me svolta durante questi ultimi sei mesi è stata sviluppata presso i laboratori di ricerca di IMA S.p.a.. IMA (Industria Macchine Automatiche) è una azienda italiana che naque nel 1961 a Bologna ed oggi riveste il ruolo di leader mondiale nella produzione di macchine automatiche per il packaging di medicinali. Vorrei subito mettere in luce che in tale contesto applicativo l’utilizzo di algoritmi di data-mining risulta essere ostico a causa dei due ambienti in cui mi trovo. Il primo è quello delle macchine automatiche che operano con sistemi in tempo reale dato che non presentano a pieno le risorse di cui necessitano tali algoritmi. Il secondo è relativo alla produzione di farmaci in quanto vige una normativa internazionale molto restrittiva che impone il tracciamento di tutti gli eventi trascorsi durante l’impacchettamento ma che non permette la visione al mondo esterno di questi dati sensibili. Emerge immediatamente l’interesse nell’utilizzo di tali informazioni che potrebbero far affiorare degli eventi riconducibili a un problema della macchina o a un qualche tipo di errore al fine di migliorare l’efficacia e l’efficienza dei prodotti IMA. Lo sforzo maggiore per riuscire ad ideare una strategia applicativa è stata nella comprensione ed interpretazione dei messaggi relativi agli aspetti software. Essendo i dati molti, chiusi, e le macchine con scarse risorse per poter applicare a dovere gli algoritmi di data mining ho provveduto ad adottare diversi approcci in diversi contesti applicativi: • Sistema di identificazione automatica di errore al fine di aumentare di diminuire i tempi di correzione di essi. • Modifica di un algoritmo di letteratura per la caratterizzazione della macchina. La trattazione è così strutturata: • Capitolo 1: descrive la macchina automatica IMA Adapta della quale ci sono stati forniti i vari file di log. Essendo lei l’oggetto di analisi per questo lavoro verranno anche riportati quali sono i flussi di informazioni che essa genera. • Capitolo 2: verranno riportati degli screenshoot dei dati in mio possesso al fine di, tramite un’analisi esplorativa, interpretarli e produrre una formulazione di idee/proposte applicabili agli algoritmi di Machine Learning noti in letteratura. • Capitolo 3 (identificazione di errore): in questo capitolo vengono riportati i contesti applicativi da me progettati al fine di implementare una infrastruttura che possa soddisfare il requisito, titolo di questo capitolo. • Capitolo 4 (caratterizzazione della macchina): definirò l’algoritmo utilizzato, FP-Growth, e mostrerò le modifiche effettuate al fine di poterlo impiegare all’interno di macchine automatiche rispettando i limiti stringenti di: tempo di cpu, memoria, operazioni di I/O e soprattutto la non possibilità di aver a disposizione l’intero dataset ma solamente delle sottoporzioni. Inoltre verranno generati dei DataSet per il testing di dell’algoritmo FP-Growth modificato.