930 resultados para Damage model
Resumo:
Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.
Resumo:
The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.
Resumo:
This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.
Resumo:
There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
This paper presents a material model to simulate load induced cracking in Reinforced Concrete (RC) elements in ABAQUS finite element package. Two numerical material models are used and combined to simulate complete stress-strain behaviour of concrete under compression and tension including damage properties. Both numerical techniques used in the present material model are capable of developing the stress-strain curves including strain softening regimes only using ultimate compressive strength of concrete, which is easily and practically obtainable for many of the existing RC structures or those to be built. Therefore, the method proposed in this paper is valuable in assessing existing RC structures in the absence of more detailed test results. The numerical models are slightly modified from the original versions to be comparable with the damaged plasticity model used in ABAQUS. The model is validated using different experiment results for RC beam elements presented in the literature. The results indicate a good agreement with load vs. displacement curve and observed crack patterns.
Resumo:
Objectives The p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is involved in a variety of inflammatory responses, including cytokine generation, cell differentiation proliferation and apoptosis. Here, we examined the effects of systemic p38 MAPK inhibition on cartilage cells and osteoarthritis (OA) disease progression by both in vitro and in vivo approaches. Methods p38 kinase activity was evaluated in normal and OA cartilage cells by measuring the amount of phosphorylated protein. To examine the function of p38 signaling pathway in vitro, normal chondrocytes were isolated and differentiated in the presence or absence of p38 inhibitor; SB203580 and analysed for chondrogenic phenotype. Effect of systemic p38 MAPK inhibition in normal and OA (induced by menisectomy) rats were analysed by treating animals with vehicle alone (DMS0) or p38 inhibitor (SB203580). Damage to the femur and tibial plateau was evaluated by modified Mankin score, histology and immunohistochemistry. Results Our in vitro studies have revealed that a down-regulation of chondrogenic and increase of hypertrophic gene expression occurs in the normal chondrocytes, when p38 is neutralized by a pharmacological inhibitor. We further observed that the basal levels of p38 phosphorylation were decreased in OA chondrocytes compared with normal chondrocytes. These findings together indicate the importance of this pathway in the regulation of cartilage physiology and its relevance to OA pathogenesis. At in vivo level, systematic administration of a specific p38 MAPK inhibitor, SB203580, continuously for over a month led to a significant loss of proteoglycan; aggrecan and cartilage thickness. On the other hand, SB203580 treated normal rats showed a significant increase in TUNEL positive cells, cartilage hypertrophy markers such as Type 10 collagen, Runt-related transcription factor and Matrix metalloproteinase-13 and substantially induced OA like phenotypic changes in the normal rats. In addition, menisectomy induced OA rat models that were treated with p38 inhibitor showed aggravation of cartilage damage. Conclusions In summary, this study has provided evidence that the component of the p38 MAPK pathway is important to maintain the cartilage health and its inhibition can lead to severe cartilage degenerative changes. The observations in this study highlight the possibility of using activators of the p38 pathway as an alternative approach in the treatment of OA.
Resumo:
Peeling is an essential phase of post harvesting and processing industry; however the undesirable losses and waste rate that occur during peeling stage are always the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical method is the most preferred; this method keeps edible portions of produce fresh and creates less damage. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry which needs more study on technological aspects of this industrial segment. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. In the proposed study a nonlinear model which will be capable of simulating the peeling process specifically, will be developed. It is expected that unavailable information such as cutting force, maximum shearing force, shear strength, tensile strength and rupture stress will be quantified using the new FEA model. The outcomes will be used to optimize and improve the current mechanical peeling methods of this class of vegetables and thereby enhance the overall effectiveness of processing operations. Presented paper aims to review available literature and previous works have been done in this area of research and identify current gap in modelling and simulation of food processes.
A tan in a test tube -in vitro models for investigating ultraviolet radiation-induced damage in skin
Resumo:
Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
This paper develops and applies a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage detection in slab-on-girder bridges. The proposed procedure is first validated through experimental testing of a model bridge. Numerically simulated modal data obtained through finite element analyses are then used to evaluate the vibration parameters before and after damage and used as the indices for assessment of the state of structural health. The procedure is illustrated by its application to full scale slab-on-girder bridges under different damage scenarios involving single and multiple damages on the deck and girders.
Resumo:
The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.