867 resultados para Damage Localization
Resumo:
Cells from patients with the genetic disorder ataxia-telangiectasia (A-T) are hypersensitive to ionizing radiation and radiomimetic agents, both of which generate reactive oxygen species capable of causing oxidative damage to DNA and other macromolecules. We describe in A-T cells constitutive activation of pathways that normally respond to genotoxic stress, Basal levels of p53 and p21(WAF1/CIP1), phosphorylation on serine 15 of p53, and the Tyr15-phosphorylated form of cdc2 are chronically elevated in these cells. Treatment of A-T cells with the antioxidant alpha -lipoic acid significantly reduced the levels of these proteins, pointing to the involvement of reactive oxygen species in their chronic activation. These findings suggest that the absence of functional ATM results in a mild but continuous state of oxidative stress, which could account for several features of the pleiotropic phenotype of A-T.
Resumo:
Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.
Resumo:
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Resumo:
Effects of gall damage by the introduced moth Epiblema stremiana on different growth stages of the weed Parathenium hysterophorus was evaluated in a field cage using potted plants with no competition and in naturally regenerated populations with intraspecific competition. Gall damage at early stages of plant growth reduced the plant height, main stem height, flower production, lear production, and shoot and root biomass. All galled, potted plants with no competition produced flowers irrespective of the growth stage at which the plants were affected by galling, but lesser than in ungalled plants. Gall induction during early growth stages in field plants experiencing competition prevented 30% of the plants reaching flowering. However, 6% of the field plants escaped from gall damage, as their main stems were less vigorous to sustain the development of galls. Flower production per unit total plant biomass was lower in galled plants than in ungalled plants, and the reduction was more intense when gall damage was initiated at early stages of plant growth. In potted plants with no competition, the number of galls increased with the plant vigour, as the gall insects preferred more vigorous plants. But in field plants there were no relationship between gall abundance and plant vigour, as intraspecific competition enhanced the negative effects of galling by reducing the vigour of the weed.
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type If (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of a-tocopherol may be reduced in myopathic patients. However, a-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted. (C) 2002 Elsevier Science Inc.
Resumo:
Areas of the limbic system of adult male Wistar rats were screened for kainic-acid-induced gene expression. Polymerase-chain-reactionbased differential display identified a 147-bp cDNA fragment, which represented an mRNA that was upregulated in the entorhinal cortex and hippocampus in the kainic-acid-treated animals. The sequence was 97.8% homologous to rat 14-3-3 zeta isoform mRNA. Detailed Northern analysis revealed increased mRNA levels in the entorhinal cortex I h after kainic acid exposure and continued elevation 24 h post-injection in both the entorhinal cortex and hippocampus. Western blot analyses confirmed that the protein product of this gene was also present in increased amounts over the same time period. Immunohistochemistry and terminal transferase-mediated dUTP nick end labelling (TUNEL) detected expression of 14-3-3 protein exclusively in the entorhinal cortex and hippocampus, and only in TUNEL-positive neuronal cells. Expression of the tumor suppressor protein, p53 was also induced by kainate injection, and was co-localized with 14-3-3 zeta protein in selected cells only in the affected brain regions. The increase gene expression of 14-3-3 represents a transcription-mediated response associated with region selective neuronal damage induced by kainic acid. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In order to study the effect of arsenic on DNA damage, Sprague-Dawley rats were dosed with sodium arsenite (10 mg/kg) with or without 800 mug of benzo(a)pyrene (BP) by intramammilary injection. The animals were sacrificed on day 1, 3, 5, 10 and 27 and the mammary gland tissues were collected for DNA adduct measurement using a P-32 post-labeling assay. Animals dosed with arsenic alone did not show any DNA adducts. DNA adduct levels in rats dosed with BP alone reached a maximum level by day 5, reducing to 13% of this level by day 27. Adduct levels in rats dosed with arsenic and BP also reached a maximum by day 5 but only 80% of the level observed in the BP group. However, 84% of this amount still remained by day 27. The First Nucleotide Change (FNC) technique was used for the screening of 115 samples of various tissues from mice that had been chronically exposed to sodium arsenate for over 2 years revealed that inorganic arsenic did not attack the two putative hotspots (codons 131 and 154) of the hOGG1 gene. These results support the hypothesis that arsenic exerts its biological activity through DNA repair inhibition. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.
Resumo:
Background: Cementum is essential for periodontal regeneration, as it provides anchorage between the root surface and the periodontal ligament. A variety of macromolecules present in the extracellular matrix of the periodontium, including proteoglycans, are likely to play a regulatory role in cementogenesis. Recently, the small leucine-rich proteoglycan, fibromodulin, has been isolated from bovine periodontal ligament and localized in bovine cementum, as well as in human periodontal ligament. Objective: The aim of this study was to examine the distribution of fibromodulin during cementogenesis and root formation. Methods: A standard indirect immunoperoxidase technique was employed, using an antifibromodulin polyclonal antibody on sections of molar teeth from rats aged 3, 5 and 8 weeks. Results: Immunoreactivity to fibromodulin was evident in the periodontal ligament in all sections. An intense positive stain was observed in the extracellular matrix where the periodontal ligament fibers insert into the alveolar bone and where the Sharpey's fibers insert into the cementum. There was no staining evident in the mineralized cellular and acellular cementum. The intensity of immunoreactivity to the antifibromodulin antibody increased proportionally with increasing tissue maturation. Conclusion: The results from this study suggest that fibromodulin is a significant component of the extracellular matrix in the periodontal ligament during development, and may play a regulatory role in the mineralization process or maintaining homeostasis at the hard-soft tissue interface during cementogenesis.
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Previous studies have shown that a deficiency in DNA damage repair is associated with increased cancer risk, and exposure to UV radiation is a major risk factor for the development of malignant melanoma. High density of common nevi (moles) is a major risk factor for cutaneous melanoma. A nevus may result from a mutation in a single UV-exposed melanocyte which failed to repair DNA damage in one or more critical genes. XRCC3 and XRCC5 may have an effect on nevus count through their function as components of DNA repair processes that may be involved directly or indirectly in the repair of DNA damage due to UV radiation. This study aims to test the hypothesis that the frequency of flat or raised moles is associated with polymorphism at or near these DNA repair genes, and that certain alleles are associated with less efficient DNA repair, and greater nevus density. Twins were recruited from schools in south eastern Queensland and were examined close to their 12th birthday. Nurses examined each individual and counted all moles on the entire body surface. A 10cM genome scan of 274 families (642 individuals) was performed and microsatellite polymorphisms in XRCC3 and adjacent to XRCC5 were also typed. Linkage and association of nevus count to these loci were tested simultaneously using a structural-equation modeling approach implemented in MX. There is weak evidence for linkage of XRCC5 to a QTL influencing raised mole count, and also weak association. There is also weak evidence for association between flat mole count and XRCC3. No tests were significant after correction for testing multiple alleles, nor were any of the tests for total association significant. If variation in XRCC3 or XRCC5 influences UV sensitivity, and indirectly affects nevus density, then the effects are small.