953 resultados para DOPA-RESPONSIVE DYSTONIA
Resumo:
An 11-year-old girl presented with sudden sensory disturbance and left-sided muscle weakness. MRI revealed ischaemic change in the right lateral thalamus and the right internal capsule. During sonographic work-up of the cervical arteries, inflammation of the thyroid gland was noted. The results of the thyroid function tests and antibody titers confirmed Hashimoto thyroidits. Under high-dose corticosteroids, the girl had a full neurological recovery.
Resumo:
BACKGROUND: Variation in the ABCB1 gene is believed to play a role in drug resistance in epilepsy. HYPOTHESIS/OBJECTIVES: Variation in the ABCB1 gene encoding the permeability-glycoprotein could have an influence on phenobarbital (PB) resistance, which occurs with high frequency in idiopathic epileptic Border Collies (BCs). Animals: Two hundred and thirty-six client-owned BCs from Switzerland and Germany including 25 with idiopathic epilepsy, of which 13 were resistant to PB treatment. METHODS: Prospective and retrospective case-control study. Data were collected retrospectively regarding disease status, antiepileptic drug (AED) therapy, and drug responsiveness. The frequency of a known mutation in the ABCB1 gene (4 base-pair deletion in the ABCB1 gene [c.296_299del]) was determined in all BCs. Additionally, the ABCB1 coding exons and flanking sequences were completely sequenced to search for additional variation in 41 BCs. Association analyses were performed in 2 case-control studies: idiopathic epileptic and control BCs and PB-responsive and resistant idiopathic epileptic BCs. RESULTS: One of 236 BCs (0.4%) was heterozygous for the mutation in the ABCB1 gene (c.296_299del). A total of 23 variations were identified in the ABCB1 gene: 4 in exons and 19 in introns. The G-allele of the c.-6-180T > G variation in intron 1 was significantly more frequent in epileptic BCs resistant to PB treatment than in epileptic BCs responsive to PB treatment (P(raw) = .0025). CONCLUSIONS AND CLINICAL IMPORTANCE: A variation in intron 1 of the ABCB1 gene is associated with drug responsiveness in BCs. This might indicate that regulatory mutations affecting the expression level of ABCB1 could exist, which may influence the reaction of a dog to AEDs.
Is there an optimal scan time for 6-[F-18]fluoro-L-DOPA PET in pheochromocytomas and paragangliomas?
Resumo:
To define the appropriate scan time for fluorine-18-labeled dihydroxyphenylalanine (F-18 DOPA) PET in oncological imaging of pheochromocytomas and paragangliomas.
Resumo:
The United States¿ Federal and State laws differentiate between acceptable (or, legal) and unacceptable (illegal) behavior by prescribing restrictive punishment to citizens and/or groups that violate these established rules. These regulations are written to treat every person equally and to fairly serve justice; furthermore, the sanctions placed on offenders seek to reform illegal behavior through limitations on freedoms and rehabilitative programs. Despite the effort to treat all offenders fairly regardless of social identity categories (e.g., sex, race, ethnicity, socioeconomic status, age, ability, and gender and sexual orientation) and to humanely eliminate illegal behavior, the American penal system perpetuates de facto discrimination against a multitude of peoples. Furthermore, soaring recidivism rates caused by unsuccessful re-entry of incarcerated offenders puts economic stress on Federal and State budgets. For these reasons, offenders, policy-makers, and law-abiding citizens should all have a vested interest in reforming the prison system. This thesis focuses on the failure of the United States corrections system to adequately address the gender-specific needs of non-violent female offenders. Several factors contribute to the gender-specific discrimination that women experience in the criminal justice system: 1) Trends in female criminality that skew women¿s crime towards drug-related crimes, prostitution, and property offenses; 2) Mandatory minimum sentences for drug crimes that are disproportionate to the crime committed; 3) So-called ¿gender-neutral¿ educational, vocational, substance abuse, and mental health programming that intends to equally rehabilitate men and women, but in fact favors men; and 4) The isolating nature of prison structures that inhibits smooth re-entry into society. I argue that a shift in the placement and treatment of non-violent female offenders is necessary for effective rehabilitation and for reducing recidivism rates. The first component of this shift is the design and implementation of gender- responsive treatment (GRT) rather than gender-neutral approaches in rehabilitative programming. The second shift is the utilization of alternatives to incarceration, which provide both more humane treatment of offenders and smoother reintegration to society. Drawing on recent scholarship, information from prison advocacy organizations, and research with men in an alternative program, I provide a critical analysis of current policies and alternative programs, and suggest several proposals for future gender- responsive programs in prisons and in place of incarceration. I argue that the expansion of gender-responsive programming and alternatives to incarceration respond to the marginalization of female offenders, address concerns about the financial sustainability of the United States criminal justice system, and tackle high recidivism rates.
Resumo:
The deletion mutation of glutamate codon (GAG) in the TOR1A gene is a major cause of primary generalized dystonia. Recent genetic studies suggest that the rs1182 polymorphism in the same gene may represent a risk factor for primary dystonia. However, this finding has been inconsistent. Furthermore, no data on such an association in a Chinese population have been published.
Resumo:
The D216H single-nucleotide polymorphism (SNP) (rs1801968) in DYT1 exon 4 has been suggested to be a genetic modifier in primary dystonia.
Resumo:
The goal of this study was to investigate the correlation between perinuclear antineutrophilic cytoplasmic antibody (pANCA) and clinical scores before and after treatment in diarrheic dogs with food-responsive disease (FRD) or inflammatory bowel disease (IBD). pANCA serology was evaluated prospectively by indirect immunofluorescence in 65 dogs with signs of gastrointestinal disease, and if positive, pANCA antibody titers were determined. Thirty-nine dogs with FRD responded to a novel diet, and 26 dogs with IBD were treated with corticosteroids. The severity of clinical signs was scored by means of a canine IBD activity index (CIBDAI). At initial examination, a significantly (P = .002) higher percentage of dogs were pANCA-positive in the FRD group (62%) compared with the IBD group (23%). pANCA titers were significantly higher (P = .003) before treatment in the FRD group (median titer 100) compared with the IBD group (median titer 1). However, there was no difference in pANCA titers between the groups after respective treatments because dogs in the IBD group had a significant increase in pANCA titer after treatment. The CIBDAI score decreased significantly (P < .001) after treatment in both groups (74% moderate to severe in FRD dogs before versus 8% after treatment; 85% moderate to severe in IBD dogs before versus 32% after treatment). There was no correlation between pANCA status in FRD or IBD dogs before treatment and scores for CIBDAI, endoscopy, or histopathology before or after treatment, except for the endoscopic duodenal score in dogs with FRD after treatment (P = .03). A positive pANCA test before therapy may aid in the diagnosis of FRD.
Resumo:
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.
Resumo:
We evaluated whether a probiotic supplementation in dogs with food responsive diarrhoea (FRD) has beneficial effects on intestinal cytokine patterns and on microbiota. Twenty-one client-owned dogs with FRD were presented for clinically needed duodeno- and colonoscopy and were enrolled in a prospective placebo (PL)-controlled probiotic trial. Intestinal tissue samples and faeces were collected during endoscopy. Intestinal mRNA abundance of interleukin (IL)-5, -10, -12p40 and -13, tumour necrosis factor-alpha, transforming growth factor-beta1 and interferon (IFN)-gamma were analysed and numbers of Lactobacillus spp., Bifidobacterium spp., Enterococcus spp. and Enterobacteriaceae and supplemented probiotic bacteria were determined in faeces. The Canine Inflammatory Bowel Disease Activity Index, a scoring system comprising general attitude, appetite, faecal consistency, defecation frequency, and vomitus, decreased in all dogs (p < 0.0001). Duodenal IL-10 mRNA levels decreased (p = 0.1) and colonic IFN-gamma mRNA levels increased (p = 0.08) after probiotic treatment. Numbers of Enterobacteriaceae decreased in FRD dogs receiving probiotic cocktail (FRD(PC)) and FRD dogs fed PL (FRD(PL)) during treatment (p < 0.05), numbers of Lactobacillus spp. increased in FRD(PC after) when compared with FRD(PC before) (p < 0.1). One strain of PC was detected in five of eight FRD(PC) dogs after probiotic supplementation. In conclusion, all dogs clinically improved after treatment, but cytokine patterns were not associated with the clinical features irrespective of the dietary supplementation.
Resumo:
BACKGROUND: Dystonia is a heterogenous group of movement disorders whose clinical spectrum is very wide. At least 13 different genes and gene loci have been reported. While a 3-bp deletion in the DYT1 gene is the most frequent cause of early limb-onset, generalized dystonia, it has also been found in non-generalized forms of sporadic dystonia. An 18-bp deletion in the DYT1 gene has also been reported. OBJECTIVES: We screened for the 3-bp and 18-bp deletions in the DYT1 gene among our sporadic, adult-onset primary dystonia patients in Singapore. We reviewed the literature to compare the frequency of DYT1 mutation between the East and the West. METHODS: We screened 54 patients with primary dystonia (focal: n=41; segmental: n=11; multifocal: n=1; generalized: n=1) for the deletions in the DYT1 gene. A careful review of all published literature on DYT1 screening among sporadic, non-familial, non-Ashkenazi Jewish patients was done. RESULTS: We did not detect any mutations in the exon 5 of the DYT1 gene in any of our patients. The frequency of DYT1 mutation amongst Asians (1.0%) was comparable to the West (1.56%) (p=NS). CONCLUSIONS: DYT1 mutations are uncommon amongst adult primary dystonia patients in Singapore.
Resumo:
The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.
Resumo:
It is widely accepted that peripheral trauma such as soft tissue injuries can trigger dystonia, although little is known about the underlying mechanism. Because peripheral injury only rarely appears to elicit dystonia, a predisposing vulnerability in cortical motor areas might play a role. Using single and paired-pulse pulse transcranial magnetic stimulation, we evaluated motor cortex excitability of a hand muscle in a patient with peripherally induced foot dystonia, in her brother with craniocervical dystonia, and in her unaffected sister, and compared their results to those from a group of normal subjects. In the patient with peripherally induced dystonia, we found a paradoxical intracortical facilitation at short interstimulus intervals of 3 and 5 milliseconds, at which regular intracortical inhibition (ICI) occurred in healthy subjects. These findings suggest that the foot dystonia may have been precipitated as the result of a preexisting abnormality of motor cortex excitability. Furthermore, the abnormality of ICI in her brother and sister indicates that altered motor excitability may be a hereditary predisposition. The study demonstrates that the paired-pulse technique is a useful tool to assess individual vulnerability, which can be particularly relevant when the causal association between trauma and dystonia is less evident.