981 resultados para DNA Fragment Assembly


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the variation in mitochondrial DNA by sequencing the D-loop region in wild and domestic (large-white breed) pigs, in hybrids between domestic and wild pigs, and in Monteiro pigs. A D-loop fragment of approximately 330 bp was amplified by PCR. Sequencing of DNA amplicons identified haplotypes previously described as European and Asian types. Monteiro pigs and wild pigs had European haplotypes and domestic pigs had both European and Asian haplotypes. ©FUNPEC-RP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a typical protocol for attaching DNA to a gold electrode, thiolated DNA is incubated with the electrode at neutral pH overnight. Here we report fast adsorption of non-thiolated DNA oligomers on gold electrodes at acidic pH (i.e., pH ~3.0). The peak-to-peak potential difference and the redox peak currents in typical cyclic voltammetry of [Fe(CN)6]3- are investigated to monitor the attachment. Compared with incubation at neutral pH, the lower pH can significantly promote the adsorption processes, enabling efficient adsorption even in 30min. The adsorption rate is DNA concentration-dependent, while the ionic strength shows no influence. Moreover, the adsorption is base-discriminative, with a preferred order of A>C≫G, T, which is attributed to the protonation of A and C at low pH and their higher binding affinity to gold surface. The immobilized DNA is functional and can hybridize with its complementary DNA but not a random DNA. This work is promising to provide a useful time-saving strategy for DNA assembly on gold electrodes, allowing fast fabrication of DNA-based biosensors and devices. © 2013 Elsevier Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA elongation is performed by Pol III α subunit in E. coli, stimulated by the association with ε and θ subunits. These three subunits define the DNA Pol III catalytic core. There is controversy about the DNA Pol III assembly for the simultaneous control of lagging and leading strands replication, since some Authors propose a dimeric model with two cores, whereas others have assembled in vitro a trimeric DNA Pol III with a third catalytic core, which increases the efficiency of DNA replication. Moreover, the function of the PHP domain, located at the N-terminus of α subunit, is still unknown. Previous studies hypothesized a possible pyrophosphatase activity, not confirmed yet. The present Thesis highlights by the first time the production in vivo of a trimeric E. coli DNA Pol III by co-expressing α, τ, ε and θ subunits. This trimeric complex has been enzymatically characterized and a molecular model has been proposed, with 2 α subunits sustaining the lagging-strand replication whereas the third core replicates the leading strand. In addition, the pyrophosphatase activity of the PHP domain has been confirmed. This activity involves, at least, the H12 and the D19 residues, whereas the D201 regulates phosphate release. On the other hand, an artificial polymerase (HoLaMa), designed by deleting the exonuclease domain of Klenow Fragment, has been expressed, purified and characterized for a better understanding of bacterial polymerases mechanism. The absence of exonuclease domain impaired enzyme processivity, since this domain is involved in DNA binding. Finally, Klenow enzyme, HoLaMa, α subunit and DNA Pol III αεθ have been characterized at the single-molecule level by FRET analysis, combining ALEX and TIRF microscopy. Fluorescently-labeled DNA molecules were immobilized, and changes in FRET efficiency enabled us to study polymerase binding and DNA polymerization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 1964 first proposed by Robin Holliday as a mechanistic model to solve the mystery of how genetic information is exchanged in yeast, the DNA four-way junction or Holliday junction (HJ) was proofed to be the key in- termediate in homologous recombination and became an important tool in the field of DNA origami, computation and nanomachines. Herein we use the assembly of four modified nucleic acid strands into the planar square conformation of this higher order DNA structure to demonstrate in a proof of principle manner the cumulative effect of pyrene moieties interacting inside the junction.[1][2]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The controlled arraying of DNA strands on adaptive polymeric platforms remains a challenge. Here, the noncovalent synthesis of DNA-grafted supramolecular polymers from short chimeric oligomers is presented. The oligomers are composed of an oligopyrenotide strand attached to the 5′-end of an oligodeoxynucleotide. The supramolecular polymerization of these oligomers in an aqueous medium leads to the formation of one-dimensional (1D) helical ribbon structures. Atomic force and transmission electron microscopy show rod-like polymers of several hundred nanometers in length. DNA-grafted polymers of the type described herein will serve as models for the development of structurally and functionally diverse supramolecular platforms with applications in materials science and diagnostics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assembly and composition of human excision nuclease were investigated by electrophoretic mobility shift assay and DNase I footprinting. Individual repair factors or any combination of up to four repair factors failed to form DNA–protein complexes of high specificity and stability. A stable complex of high specificity can be detected only when XPA/RPA, transcription factor IIH, XPC⋅HHR23B, and XPG and ATP are present in the reaction mixture. The XPF⋅ERCC1 heterodimer changes the electrophoretic mobility of the DNA–protein complex formed with the other five repair factors, but it does not confer additional specificity. By using proteins with peptide tags or antibodies to the repair factors in electrophoretic mobility shift assays, it was found that XPA, replication protein A, transcription factor IIH, XPG, and XPF⋅excision repair cross-complementing 1 but not XPC⋅HHR23B were present in the penultimate and ultimate dual incision complexes. Thus, it appears that XPC⋅HHR23B is a molecular matchmaker that participates in the assembly of the excision nuclease but is not present in the ultimate dual incision complex. The excision nuclease makes an assymmetric DNase I footprint of ≈30 bp around the damage and increases the DNase I sensitivity of the DNA on both sides of the footprint.