995 resultados para DIETARY LIPIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipid composition of the human lens is distinct from most other tissues in that it is high in dihydrosphingomyelin and the most abundant glycerophospholipids in the lens are unusual 1-O-alkyl-ether linked phosphatidylethanolamines and phosphatidylserines. In this study, desorption electrospray ionization (DESI) mass spectrometry-imaging was used to determine the distribution of these lipids in the human lens along with other lipids including, ceramides, ceramide-1-phosphates, and lyso 1-O-alkyl ethers. To achieve this, 25 μm lens slices were mounted onto glass slides and analyzed using a linear ion-trap mass spectrometer equipped with a custom-built, 2-D automated DESI source. In contrast to other tissues that have been previously analyzed by DESI, the presence of a strong acid in the spray solvent was required to desorb lipids directly from lens tissue. Distinctive distributions were observed for [M + H]+ ions arising from each lipid class. Of particular interest were ionized 1-O-alkyl phosphatidylethanolamines and phosphatidylserines, PE (18:1e/18:1), and PS (18:1e/18:1), which were found in a thin ring in the outermost region of the lens. This distribution was confirmed by quantitative analysis of lenses that were sectioned into four distinct regions (outer, barrier, inner, and core), extracted and analyzed by electrospray ionization tandem mass spectrometry. DESI-imaging also revealed a complementary distribution for the structurally-related lyso 1-O-alkyl phosphatidylethanolamine, LPE (18:1e), which was localized closer to the centre of the lens. The data obtained in this study indicate that DESI-imaging is a powerful tool for determining the spatial distribution of human lens lipids. © 2010 American Society for Mass Spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in analytical technologies have driven significant advances in lipid science. The sensitivity and selectivity of modern mass spectrometers can now provide for the detection and even quantification of many hundreds of lipids in a single analysis. In parallel, increasing evidence from structural biology suggests that a detailed knowledge of lipid molecular structure including carbon-carbon double bond position, stereochemistry and acyl chain regiochemistry is required to fully appreciate the biochemical role(s) of individual lipids. Here we review the capabilities and limitations of tandem mass spectrometry to provide this level of structural specificity in the analysis of lipids present in complex biological extracts. In particular, we focus on the capabilities of a novel technology termed ozone-induced dissociation to identify the position (s) of double bonds in unsaturated lipids and discuss its possible role in efforts to develop workflows that provide for complete structure elucidation of lipids by mass spectrometry alone: so-called top-down lipidomics. This article is part of a Special Issue entitled: Lipodomics and Imaging Mass Spectrom. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospray ionisation tandem mass spectrometry has allowed the unambiguous identification and quantification of individual lens phospholipids in human and six animal models. Using this approach ca. 100 unique phospholipids have been characterised. Parallel analysis of the same lens extracts by a novel direct-insertion electron-ionization technique found the cholesterol content of human lenses to be significantly higher (ca. 6 times) than lenses from the other animals. The most abundant phospholipids in all the lenses examined were choline-containing phospholipids. In rat, mouse, sheep, cow, pig and chicken, these were present largely as phosphatidylcholines, in contrast 66% of the total phospholipid in Homo sapiens was sphingomyelin, with the most abundant being dihydrosphingomyelins, in particular SM(d18:0/16:0) and SM(d18:0/24:1). The abundant glycerophospholipids within human lenses were found to be predominantly phosphatidylethanolamines and phosphatidylserines with surprisingly high concentrations of ether-linked alkyl chains identified in both classes. This study is the first to identify the phospholipid class (head-group) and assign the constituent fatty acid(s) for each lipid molecule and to quantify individual lens phospholipids using internal standards. These data clearly indicate marked differences in the membrane lipid composition of the human lens compared to commonly used animal models and thus predict a significant variation in the membrane properties of human lens fibre cells compared to those of other animals. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in mass spectrometry and chromatography provide new possibilities for the identification and in some instances quantification of a wide range of lipids in complex matrices. These advances in analytical technologies have provided a tantalizing glimpse of the true structural diversity of lipids in nature and have reinvigorated interest in the role of lipids in biology. While technological advances have been impressive, difficulties in the ready identification of sites of unsaturation (i.e., double bond position) within these molecules presents a significant impediment to understanding lipid biochemistry. This is of particular importance given the growing body of literature suggesting that the presence of naturally occurring lipid double bond isomers can have a significant influence, both positive and negative, on the development of pathologies such as cancer, cardiovascular disease and type 2 diabetes. This article provides a critical review of the Current suite of analytical approaches to the challenge of identification of the position of carbon-carbon double bonds in intact lipids. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine the threshold of exercise energy expenditure necessary to change blood lipid and lipoprotein concentrations and lipoprotein lipase activity (LPLA) in healthy, trained men. On different days, 11 men (age, 26.7 +/- 6.1 yr; body fat, 11.0 +/- 1.5%) completed four separate, randomly assigned, submaximal treadmill sessions at 70% maximal O-2 consumption. During each session 800, 1,100, 1,300, or 1,500 kcal were expended. Compared with immediately before exercise, high-density lipoprotein cholesterol (HDL-C) concentration was significantly elevated 24 h after exercise (P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated (P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 h before exercise, LPLA. was significantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions and remained elevated 48 h after exercise in the 1,500-kcal session. These data indicate that, in healthy, trained men, 1,100 kcal of energy expenditure are necessary to elicit increased HDL-C concentrations. These HDL-C changes coincided with increased LPLA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Migraine is a highly disabling disease affecting a significant proportion of the Australian population. The Methylenetetrahydrofolate Reductase (MTHFR) C677T variant has been associated with increased levels of homocysteine and risk of migraine with aura (MA). Folic acid, Vitamin B6 and B12 supplementation has been previously shown to reduce increased levels of homocysteine and decrease migraine symptoms. However the influence of dietary folate intake on migraine has been unclear. The aim of the current study was to analyse the association of dietary folate intake in the form of dietary folate equivalent (DFE), folic acid (FA) and total food folate (TFF) on migraine frequency, severity and disability. Methods A cohort of 141 adult females of Caucasian descent with MA was genotyped for the MTHFRC677T variant using restriction enzyme digestion. Dietary folate information was collected from all participants and analysed using the “FoodWorks” 2009 package. Folate consumption was compared to migraine frequency, severity and disability using linear regression. Results A significant inverse relation was observed between DFE [R2= 0.201, P= 0.045, CI (-0.004, -0.001)] and FA [R2= 0.255, P= 0.036, 95% CI (-0.009, -0.002)] consumption and migraine frequency. It was also observed that in individuals with the CC genotype for the MTHFR C677T variant, migraine frequency was significantly linked to FA consumption [R2= 0.077, P= 0.029, CI (-0.009, -0.005)]. Conclusions The results from this study indicate that folate intake in the form of folic acid may influence migraine frequency in female MA sufferers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evidence for nutritional support in COPD is almost entirely based on oral nutritional supplements (ONS) yet despite this dietary counseling and food fortification (DA) are often used as the first line treatment for malnutrition. This study aimed to investigate the effectiveness of ONS vs. DA in improving nutritional intake in malnourished outpatients with COPD. 70 outpatients (BMI 18.4 SD 1.6 kg/m2, age 73 SD 9 years, severe COPD) were randomised to receive a 12-week intervention of either ONS or DA (n 33 ONS vs. n 37 DA). Paired t-test analysis revealed total energy intakes significantly increased with ONS at week 6 (+302 SD 537 kcal/d; p = 0.002), with a slight reduction at week 12 (+243 SD 718 kcal/d; p = 0.061) returning to baseline levels on stopping supplementation. DA resulted in small increases in energy that only reached significance 3 months post-intervention (week 6: +48 SD 623 kcal/d, p = 0.640; week 12: +157 SD 637 kcal/d, p = 0.139; week 26: +247 SD 592 kcal/d, p = 0.032). Protein intake was significantly higher in the ONS group at both week 6 and 12 (ONS: +19.0 SD 25.0 g/d vs. DA: +1.0 SD 13.0 g/d; p = 0.033 ANOVA) but no differences were found at week 26. Vitamin C, Iron and Zinc intakes significantly increased only in the ONS group. ONS significantly increased energy, protein and several micronutrient intakes in malnourished COPD patients but only during the period of supplementation. Trials investigating the effects of combined nutritional interventions are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfusion-related acute lung injury (TRALI) has been the leading cause of transfusion-related morbidity and mortality in the UK and the USA in recent years. A threshold mechanism of TRALI has been proposed in which both patient factors (type and/or severity of clinical insult) and blood product factors (strength and/or concentration of antibodies or biological response modifiers) interact to surpass a threshold for TRALI development (Bux et al. Br J Haematol; 2007; 136: 788-99). The risk of developing antibody-mediated TRALI has been minimised by the introduction of risk-reduction strategies such as limiting the use of plasma from female donors. In contrast, there are no strategies currently in place to mitigate the development of non-antibody mediated TRALI as the mechanisms remain largely undefined. Previous studies have implicated non-polar lipids such as arachidonic acid and various species of hydroxyeicosatetranoic acid (HETE) in the development of non-antibody mediated TRALI (Silliman et al. Transfusion; 2011; 51: 2549-54), however the contribution of these lipids to the development of an inflammatory response in TRALI is poorly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meat/meat alternatives (M/MA) are key sources of Fe, Zn and protein, but intake tends to be low in young children. Australian recommendations state that Fe-rich foods, including M/MA, should be the first complementary foods offered to infants. The present paper reports M/MA consumption of Australian infants and toddlers, compares intake with guidelines, and suggests strategies to enhance adherence to those guidelines. Mother–infant dyads recruited as part of the NOURISH and South Australian Infants Dietary Intake studies provided 3 d of intake data at three time points: Time 1 (T1) (n 482, mean age 5·5 (SD 1·1) months), Time 2 (T2) (n 600, mean age 14·0 (SD 1·2) months) and Time 3 (T3) (n 533, mean age 24 (SD 0·7) months). Of 170 infants consuming solids and aged greater than 6 months at T1, 50 (29 %) consumed beef, lamb, veal (BLV) or pork on at least one of 3 d. Commercial infant foods containing BLV or poultry were the most common form of M/MA consumed at T1, whilst by T2 BLV mixed dishes (including pasta bolognaise) became more popular and remained so at T3. The processed M/MA increased in popularity over time, led by pork (including ham). The present study shows that M/MA are not being eaten by Australian infants or toddlers regularly enough; or in adequate quantities to meet recommendations; and that the form in which these foods are eaten can lead to smaller M/MA serve sizes and greater Na intake. Parents should be encouraged to offer M/MA in a recognisable form, as one of the first complementary foods, in order to increase acceptance at a later age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian food system significantly contributes to a range of key environmental issues including harmful greenhouse gas emissions, air pollution, soil desertification, biodiversity loss and water scarcity. At the same time, the Australian s food system is a key cause of public health nutrition issues that stem from the co-existence of over- and under-consumption of dietary energy and nutrients. Within these challenges lie synergies and opportunities because a diet that has a lower environmental impact generally aligns with good nutrition. Australian State and Federal initiatives to influence food consumption patterns focus on individual body weight and ‘soft law’ interventions. These regulatory approaches, by focusing on select symptoms of food system failures, are fragmented, reductionist and inefficient. In order to illustrate this point, this paper will explore Australian regulatory responses to diet-related illnesses. The analysis will support the argument that only when regulatory responses to diets become embedded within reform of the current food system will substantial improvements to human and planetary health be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis provides the first detailed data describing the dietary intake of first-born Australian children aged 12-16 months. Overall, quality of intake could improve, with toddlers being exposed to energy-dense, nutrient-poor foods which may adversely affect the development of long-term healthy food preferences and growth trajectory. The leaner, but healthy weight toddler who exhibited more frequent food refusal was described a fussy eater or prompted higher maternal concern. However these behaviours are consistent with typical child development during the second year of life. Mothers can be supported to understand food refusal as manifestation of children's ability to self-regulate energy intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective We examined whether exposure to a greater number of fruits, vegetables, and noncore foods (ie, nutrient poor and high in saturated fats, added sugars, or added salt) at age 14 months was related to children’s preference for and intake of these foods as well as maternal-reported food fussiness and measured child weight status at age 3.7 years. Methods This study reports secondary analyses of longitudinal data from mothers and children (n=340) participating in the NOURISH randomized controlled trial. Exposure was quantified as the number of food items (n=55) tried by a child from specified lists at age 14 months. At age 3.7 years, food preferences, intake patterns, and fussiness (also at age 14 months) were assessed using maternal-completed, established questionnaires. Child weight and length/height were measured by study staff at both age points. Multivariable linear regression models were tested to predict food preferences, intake patterns, fussy eating, and body mass index z score at age 3.7 years adjusting for a range of maternal and child covariates. Results Having tried a greater number of vegetables, fruits, and noncore foods at age 14 months predicted corresponding preferences and higher intakes at age 3.7 years but did not predict child body mass index z score. Adjusting for fussiness at age 14 months, having tried more vegetables at age 14 months was associated with lower fussiness at age 3.7 years. Conclusions These prospective analyses support the hypothesis that early taste and texture experiences influence subsequent food preferences and acceptance. These findings indicate introduction to a variety of fruits and vegetables and limited noncore food exposure from an early age are important strategies to improve later diet quality.