975 resultados para DIASTEREOSELECTIVE TOTAL-SYNTHESIS
Resumo:
We herein describe in full detail the first total synthesis of the antitumor agents neolaulimalide and isolaulimalide as well as a highly efficient route to laulimalide. A Kulinkovich reaction followed by a cyclopropyl-allyl rearrangement is used to install the exo-methylene group. The C(2)-C(16) aldehyde fragment is coupled with the C(17)-C(28) sulfone fragments by a highly (E)-selective Julia-Lythgoe-Kocienski olefination to deliver the key intermediates of all three syntheses. Various conditions for the Yamaguchi macrolactonization are applied to close the individual macrocycles. Finally a carefully elaborated endgame was developed to solve the problem of acyl migration in the case of neolaulimalide. All compounds were tested against several cell lines. The cytotoxicity of neolaulimalide could be confirmed for the first time since its original isolation and it could be shown that it induces tubulin polymerization as efficiently as laulimalide.
Resumo:
A general strategy for the synthesis of aignopsanes, a new family of sesquiterpene natural products of marine origin, is presented. The total synthesis of (+)-aignopsanoic acid A (1), (−)-methyl aignopsanoate A (2), and (−)-isoaignopsanoic A (3) has been achieved and their absolute configuration confirmed. (+)-Microcionin-1 (4), a structurally related furanosesquiterpene isolated in both enantiomeric forms from marine sponges, was also synthesized and its absolute configuration established in an unambiguous way. Interestingly, we report that (+)-microcionin-1 (4), can be converted by a simple oxidation process to aignopsanoic acid A (1). This transformation supports the hypothesis that (+)-microcionin-1 (4) may be an intermediate in the biosynthesis of aignopsanes.
Resumo:
An efficient synthesis of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, 1) is reported. The route described allows for diversification of the parent structure to prepare seven analogues of 1 in which the positioning of electrophilic sites is varied. These analogues were tested in SAR studies for their ability to reduce the secretion of proinflammatory cytokines. It was shown that the endocyclic enone is crucial for the bioactivity investigated and that the conjugated ω-side chain serves in a reinforcing manner.
Resumo:
Traditionally, the structure and properties of natural products have been determined by total synthesis and comparison with authentic samples. We have now applied this procedure to the first nonproteinaceous ion channel, isolated from bacterial plasma membranes, and consisting of a complex of poly(3-hydroxybutyrate) and calcium polyphosphate. To this end, we have now synthesized the 128-mer of hydroxybutanoic acid and prepared a complex with inorganic calcium polyphosphate (average 65-mer), which was incorporated into a planar lipid bilayer of synthetic phospholipids. We herewith present data that demonstrate unambiguously that the completely synthetic complex forms channels that are indistinguishable in their voltage-dependent conductance, in their selectivity for divalent cations, and in their blocking behavior (by La3+) from channels isolated from Escherichia coli. The implications of our finding for prebiotic chemistry, biochemistry, and biology are discussed.
Resumo:
An efficient monoclonal aldolase antibody that proceeds by an enamine mechanism was generated by reactive immunization. Here, this catalyst has been used in the total synthesis of epothilones A (1) and C (3). The starting materials for the synthesis of these molecules have been obtained by using antibody-catalyzed aldol and retro-aldol reactions. These precursors were then converted to epothilones A (1) and C (3) to complete the total synthesis.
Resumo:
We have completed the total chemical synthesis of cytochrome b562 and an axial ligand analogue, [SeMet7]cyt b562, by thioester-mediated chemical ligation of unprotected peptide segments. A novel auxiliary-mediated native chemical ligation that enables peptide ligation to be applied to protein sequences lacking cysteine was used. A cleavable thiol-containing auxiliary group, 1-phenyl-2-mercaptoethyl, was added to the α-amino group of one peptide segment to facilitate amide bond-forming ligation. The amine-linked 1-phenyl-2-mercaptoethyl auxiliary was stable to anhydrous hydrogen fluoride used to cleave and deprotect peptides after solid-phase peptide synthesis. Following native chemical ligation with a thioester-containing segment, the auxiliary group was cleanly removed from the newly formed amide bond by treatment with anhydrous hydrogen fluoride, yielding a full-length unmodified polypeptide product. The resulting polypeptide was reconstituted with heme and folded to form the functional protein molecule. Synthetic wild-type cyt b562 exhibited spectroscopic and electrochemical properties identical to the recombinant protein, whereas the engineered [SeMet7]cyt b562 analogue protein was spectroscopically and functionally distinct, with a reduction potential shifted by ≈45 mV. The use of the 1-phenyl-2-mercaptoethyl removable auxiliary reported here will greatly expand the applicability of total protein synthesis by native chemical ligation of unprotected peptide segments.
Resumo:
Azedaralide, a potentially advanced intermediate for the total synthesis of various tetranortriterpenes, was constructed utilising the Fernandez-Mateos protocol and assigned both relative and absolute stereochemistries. Both asymmetric aldol and classical chiral resolution attempts failed to deliver pure enantiomers whereas preparative chiral chromatography resolved racemic azedaralide with ease. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Studies detailing synthetic approaches to a variety of biosynthetically related vibsanin-type diterpenes (i.e. vibsanin E, 15-O-methylcyclovibsanin B, 3-hydroxy-vibsanin E, furano-vibsanin A, and 3-O-methylfuranovibsanin A) are discussed. Biogenetically modelled approaches are coupled with an in-vestigation of classical and modern six- to seven-membered ring-expansion protocols, which gain access to the central core of these natural products. (c) Wiley-VCH Verlag GmbH & Co.