973 resultados para DELTA-C-13
Resumo:
Mollusk shells are frequently radiocarbon dated and provide reliable calibrated age ranges when the regional marine reservoir correction is well-established. For mollusks from an estuarine environment the reservoir correction may be significantly different than the regional marine reservoir correction due to the input of bedrock or soil derived carbonates. Some mollusk species such as oysters are tolerant of a significant range of salinities which makes it difficult to determine which reservoir correction is appropriate. A case study is presented of an anomalous radiocarbon age for an oyster shell paint dish found in the fabric of the ruined nave walls of St Mary's Church, Shoreham-by-Sea, West Sussex, England. Stable isotopes (delta O-18 and delta C-13) were used to establish the type of environment in which the oyster had lived. Paired marine and terrestrial samples from a nearby medieval site were radiocarbon dated to provide an appropriate reservoir correction.
Resumo:
South Africa's southwestern Cape occupies a critical transition zone between Southern Hemisphere temperate (winter) and tropical (summer) moisture-bearing systems. In the recent geological past, it has been proposed that the relative influence of these systems may have changed substantially, but little reliable evidence regarding regional hydroclimates and rainfall seasonality exists to refine or substantiate the understanding of long-term dynamics. In this paper we present a mid-to late Holocene multi-proxy record of environmental change from a rock hyrax midden from Katbakkies Pass, located along the modern boundary between the winter and summer rainfall zones. Derived from stable carbon and nitrogen isotopes, fossil pollen and microcharcoal, these data provide a high resolution record of changes in humidity, and insight into changes in rainfall seasonality. Whereas previous work concluded that the site had generally experienced only subtle environmental change during the Holocene, our records indicate that significant, abrupt changes have occurred in the region over the last 7000 years. Contrary to expectations based on the site's location, these data indicate that the primary determinant of changes in humidity is summer rather than winter rainfall variability, and its influence on drought season intensity and/or length. These findings are consistent with independent records of upwelling along the southern and western coasts, which indicate that periods of increased humidity are related to increased tropical easterly flow. This substantially refines our understanding of the nature of temperate and tropical circulation system dynamics in SW Africa, and how changes in their relative dominance have impacted regional environments during the Holocene.
Resumo:
Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and ;delta C-13 and delta N-15 stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in delta N-15 (trophic position) were evident between all three species, with size-based and temporal shifts in delta N-15 apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models.
Resumo:
Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.
Resumo:
Atmospheric methane concentrations decreased during the early to middle Holocene; however, the governing mechanisms remain controversial. Although it has been suggested that the mid-Holocene minimum methane emissions are associated with hydrological change, direct evidence is lacking. Here we report a new independent approach, linking hydrological change in peat sediments from the Tibetan Plateau to changes in archaeal diether concentrations and diploptene delta C-13 values as tracers for methanogenesis and methanotrophy, respectively. A minimum in inferred methanogenesis occurred during the mid-Holocene, which, locally, corresponds with the driest conditions of the Holocene, reflecting a minimum in Asian monsoon precipitation. The close coupling between precipitation and methanogenesis is validated by climate simulations, which also suggest a regionally widespread impact. Importantly, the minimum in methanogenesis is associated with a maximum in methanotrophy. Therefore, methane emissions in the Tibetan Plateau region were apparently lower during the mid-Holocene and partially controlled by interactions of large-scale atmospheric circulation.
Resumo:
The three poikilophydric and homoiochlorophyllous moss species Campylopus savannarum (C. Muell.) Mitt., Racocarpus fontinaloides (C. Muell.) Par. and Ptychomitrium vaginatum Besch. grow on sun-exposed rocks of a tropical inselberg in Brazil subject to regular drying and wetting cycles. Effective photo-oxidative protection in the light-adapted desiccated state in all three species is achieved by a reduction of ground chlorophyll fluorescence, F, to almost zero. Upon rewatering, the kinetics of the recovery of F in air dry cushions to higher values is very fast in the first 5min, but more than 80min are needed until an equilibrium is reached gradually. The kinetics were not different between the three species. The three moss species, have a distinct niche occupation and form a characteristic zonation around soil vegetation islands on the rock outcrops, where C. savannarum and R. fontinaloides form an inner and outer belt, respectively, around vegetation islands and P vaginatum occurs as small isolated cushions on bare rock. However, they were not distinguished by the reduction of F in the dry state and the rewetting recovery kinetics and only slightly different in their photosynthetic capacity. Stable isotope ratios (delta C-13, delta N-15) indicate that liquid films of water limiting diffusion of CO2 are important in determining carbon acquisition and suggest that limitation of CO2 fixation by water films must be more pronounced over time in P vaginatum than in the latter species. This is determined by both the micro site occupied and the form of the moss cushions. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The stable oxygen and carbon isotopic composition of caliche in fluvial and supratidal rocks of the Abo Formation (Permian), south-central New Mexico, is controlled by palecoclimate and depositional environment. Fluvial caliche consists of low-Mg calcite nodules and vertically oriented tubules that display stage II texture. Micrite matrix support, brecciation, ooids/pisoliths, aveolar-septal texture, and peloids are common in the fluvial caliche and, along with red color and slickensides in the host shale, indicate pedogenesis in a well-oxidized vadose zone. In contrast, periodic waterlogging of the supratidal paleosols, probably due to high water table, is indicated by drab colors, carbonaceous flecks, horizontal rhizoliths, and the paucity of vadose textures in the stage II caliche nodules.Stable oxygen isotopes are similar in the fluvial and supratidal caliches and range from 21.6 to 30.5 parts per thousand (SMOW). The data exhibit a crude bimodality and delta-O-18 enrichment with a decrease in age (higher in the section). Consideration of these data in the context of delta-temperature relations suggests that 1) surface waters responsible for caliche formation increased in delta-O-18 (from roughly -8 to + 1 parts per thousand) over the 18 m.y. time interval that separated the lowest stratigraphic nodule horizon from the highest, 2) the increasing delta-O-18 values also reflect a warming trend (approximately 15-degrees to nearly 30-degrees-C) in the mean monthly temperature over this same time period, with perhaps an associated increase in Permian ocean temperatures, and 3) the significant variation in delta-O-18 from oldest to youngest caliche was probably enhanced by the amount effect, such that as the temperature increased, the amount of precipitation decreased, resulting in high delta-O-18 values.Caliches in the Abo are enriched in heavy carbon (-7.2 to -1.5 part per thousand PDB) compared to that of soil carbonate derived exclusively from C3 plants (-12 part per thousand PDB), and the supratidal caliches contain somewhat heavier carbon compared to the fluvial caliche. The delta-C-13 values for both environments increase with a decrease in caliche age. These results indicate that as the temperature increased and rainfall decreased with time, the level of C3 plant productivity apparently declined, allowing a greater influx of atmospheric CO2 into the soil. This can only occur when soil respiration rates are quite low or at very shallow depths (less than 10 cm), or both. Atmospheric CO2 seems to have invaded the supratidal soils to a somewhat greater extent than the fluvial soils.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although many studies have shown that soil solution chemistry can be a reliable indicator of biogeochemical cycling in forest ecosystems, the effects of litter manipulations on the fluxes of dissolved elements in gravitational soil solutions have rarely been investigated. We estimated the fluxes of NH4-N, NO3-N, K, Ca, Mg, Na, Cl, dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) over the first two years after re-planting Eucalyptus trees in the coastal area of Congo. Two treatments were replicated in two blocks after clear-cutting 7-year-old stands: in treatment R, all the litter above the mineral soil was removed before planting, and in a double slash (DS) treatment, the amount of harvest residues was doubled. The soil solutions were sampled down to a depth of 4 m and the water fluxes were estimated using the Hydrus 1D model parameterized from soil moisture measurements in 4 plots. Isotopic and spectroscopic analytical techniques were used to assess the changes in dissolved organic matter (DOM) properties throughout the transfer in the soil. The first year after planting, the fluxes of NH4-N, K, Ca, Mg, Na, Cl and DOC in the topsoil of the DS treatment were 2-5 times higher than in R, which showed that litter was a major source of dissolved nutrients. Nutrient fluxes in gravitational solutions decreased sharply in the second year after planting, irrespective of the soil depth, as a result of intense nutrient uptake by Eucalyptus trees. Losses of dissolved nutrients were noticeably low in these Eucalyptus plantations despite a low cation exchange capacity, a coarse soil texture and large amounts of harvest residues left on-site at the clear cut in the DS treatment. All together, these results clarified the strong effect of litter manipulation observed on eucalypt growth in Congolese sandy soils. DOM fluxes, as well as changes in delta C-13, C:N and aromaticity of DOM throughout the soil profile showed that the organic compounds produced in the litter layer were mainly consumed by microorganisms or retained in the topsoil. Below a depth of 15 cm, most of the DOC and the DON originated from the first 2 cm of the soil and the exchanges between soil solutions and soil organic matter were low. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to use proximate chemical composition, macro and trace elements, fatty acid profile and stable isotopes as traceability tools to assess geographic origin and seasonality of croaker (Micropogonicts fumieri). Croaker from Parnaiba contained higher ash in July and lower fat content than croaker from Santos. In contrast, croaker from Santos had statistically higher proportion of 16:1n-9+16:1n-7, 20:1n-11, 20:1n-9, MUFA and n-3/n-6 ratio than croaker from Parnaiba. Concerning seasonality, croaker caught in July had significantly higher amounts of 14:0, 15:0, 16:1n-9+16:1n-7 and saturated fatty acids than fish caught in December. Concerning elements, significant differences were also detected between seasons for Cl, Ca, Fe, Sr and S, whereas differences between geographic origins were only observed with K. delta C-13 and delta N-15 were statistically different between geographic origins, whereas differences between seasons were only detected in delta N-15 ratio of croaker from Santos. Fatty acids, minerals and stable isotope are effective methods to trace geographic origin and seasonality of croaker. Nonetheless, further investigation is still required with larger samples of croaker to enable the implementation of fatty acids, elements or stable isotope as authenticity tools by food control agencies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper provides a paleoenvironmental reconstruction of a Late Quaternary lagoon system in the Jaguaruna region of Santa Catarina state, southern Brazil. Integrated results of bulk sedimentary organic matter characterization (delta C-13, delta N-15 and C/N), microfossil (pollen and diatom) and grain-size analysis from three shallow cores (similar to 2.5m depth) allowed us to propose an evolving paleogeographic scenario in this coastal region for the last ca. 5500 cal a BP. The lagoonal system in this area was more extensive during the mid-Holocene than today, with a gradual and continuous lagoon-sea disconnection until the present. We add to the debate regarding relative sea-level (RSL) variations for the Brazilian coast during the Holocene and discuss the importance of sedimentary dynamics for interpreting changes in coastal ecosystems. The multi-proxy analysis suggests that changes in coastal ecosystems could be directly related to local sedimentary processes, which are not necessarily linked to RSL fluctuations and/or to climatic variations. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
If riparian buffer zones are ineffective in preventing C-4 plant carbon from upland areas reaching the stream sediment, the composition of stream fauna can be significantly altered. The permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil was measured in nine watersheds categorised according to the predominant land cover of the legally required 30-m buffer riparian zone. Four watersheds with well preserved riparian forest along the 30-m buffer zone were designated as FOREST watersheds; three watersheds, with a predominance of C-4 grasses from sugarcane to pasture, mixed with preserved riparian forests, were designated MIXED watersheds; and two watersheds were termed PASTURE-SUGAR because their entire 30-m buffer zone was covered by C-4 plants. Stable carbon (delta C-13) isotopes were used as tracers of upland C-4 carbon in sediments, suspended particulate organic carbon, terrestrial and aquatic invertebrates and two species of neotropical fish. Although the intact 30-m buffer zone of riparian forests did not entirely prevent the input of C-4 to the river environment and food web, there was a significant increase in C-4 carbon in those watersheds where the buffer zone was not covered by riparian forests. These findings emphasise the importance of riparian forests in mitigating disturbance in streams and support efforts to preserve such riparian corridors.