956 resultados para D EXCHANGE INTERACTION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with an unusual application for a copolymer of styrene-1 % divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)(3)-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aquatic humic substances (HS) investigated in this study with respect to their binding capability towards mercury(II) were isolated from the river Rio Negro, Amazonas State - Brazil, by means of the adsorbent XAD 8. Labile/inert fractions of inorganic Hg(II) complexes formed with these HS were characterized using an ion-exchange batch and column technique, respectively, based on Chelite S. This collector exhibits high Hg(II) distribution coefficients, Kd, up to the order of 104 decreasing, however, in the case of small Hg(II)/HS ratios (< 0.1 μg Hg(II) / mg HS). The influence of different complexation parameters (ratio of Hg(II)/HS, pH, contact time, complexing time) relevant for Hg(II) binding in aquatic environments was assessed. The Hg(II) lability in dissolved HS is mainly influenced by the mass ratio of Hg(II)/HS and the ageing of Hg(II)-HS species formed. This is particularly obvious in the case of low Hg(II) loading of HS where slow transformation processes of freshly formed Hg(II)-HS species significantly decrease their lability, leading to incomplete recoveries (< 20%) of the total Hg(II) bound to HS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The short-distance part of the low energy interaction of D-mesons and nucleons is investigated in the context of a quark model. The quark model is based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The basic mechanism for the short-distance interaction between the D-mesons and nucleons is quark interchange. Using Resonating GroupMethod techniques an effective potential for the interaction between nucleons and D mesons can be obtained and used in a Lippmann-Schwinger equation to obtain differential cross-sections and phase shifts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The DN interaction is studied in close analogy to the meson-exchange K̄N potential of the Jülich group using SU(4) symmetry constraints. The model generates the Λ c(2595) resonance dynamically as a DN quasi-bound state. Results for DN scattering lengths and cross sections are presented and compared with predictions based on the Weinberg-Tomozawa term. Some features of the Λ c(2595) resonance are also discussed emphasizing the role of the near-by πΣ c threshold. © 2012 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Attempts to improve beef tenderness through supplementation with dietary vitamin D-3 have been challenged by null results and negative impacts on animal performance and carcass traits. Because vitamin D-3 is also synthesised by the animal via ultraviolet radiation from sunlight, the effectiveness of supplementation with dietary vitamin D-3 may be modulated by the degree of exposure of the animal to sunlight. Hence, this work aimed to verify whether dietary vitamin D-3 modifies meat quality without negatively affecting animal performance and carcass traits in B. indicus beef cattle that were either exposed to or protected from natural sunlight. Forty-two (411 +/- 38 kg) Nellore-type castrated males were fed a high-concentrate diet for 45 days after assignment to a treatment group. The treatments comprised combinations of three levels of vitamin D3 [ViTD - none (V0) or 2 x 10(6) IU of vitamin D-3 administered for either 2 (V2) or 8 (V8) consecutive days pre-slaughter] and two shading conditions (SHADE - unshaded or shaded). The post-mortem (pm) measurements were taken in the Longissimus thoracis et lumborum muscle. The animal performance and carcass traits were unaffected by ViTD or SHADE The V2 treatment increased the Myofibrillar Fragmentation Index in shaded animals compared to unshaded ones. Animals under shade had higher muscle calcium concentration. There was no effect of either ViTD or SHADE on the shear force. The L* values were higher at 24 h pm than at 0 and 1 h pm, with no differences among the animals in the ViTD or SHADE groups. Higher a* values were observed among animals in the V8 group than in the V0 group, and higher b* values were observed among animals in the V8 group than in the V2 or V0 groups, which were not different. In conclusion, ViTD and SHADE did not affect animal performance, carcass traits or shear force, whereas animals receiving a lower ViTD dosage and SHADE exhibited altered myofibrillar fragmentation. ViTD affected the colour parameters, and changes in the lightness of the beef related to the time pm were found in meat from animals under SHADE. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.