771 resultados para Cytosolic Na


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY Both proteasomes and additional proteases play an essential role in the generation of most antigenic peptides presented by MHC class I molecules. Therefore, it is of major importance to characterize the mechanisms leading to the production of correct antigenic peptides to improve the design of vaccines. As a model determinant we used the melanoma-associated protein Melan-A, which contains the immunodominant CTL-epitope Melan-A26/27-35/HLA-A*0201 and against which a high frequency of T lymphocytes has been detected in many melanoma patients. In a first part, we have studied the effects of antigen processing on the induction of a specific T cell response in vivo. Our results have shown that the immunoproteasome, expressed in most cells after exposure to Interferon-γ (IFN-γ) and constitutively in some specialized cells such as dendritic cells, does not efficiently process the HLA¬A2-restricted peptide Melan-A26-35. We have produced recombinant lentiviral vectors (rec. 1v) and vaccinia virus (rec. vv) encoding either preprocessed Melan-A26-35(A27L) peptide or full-length Melan-A(A27L). The immunization of HLA-A2/Kb mice with thoses viruses indicates that immunoproteasomes negatively affect the induction of anti-Melan-A T cell responses in animals immunized with vectors coding for the full- length protein. This negative effect was abrogated in HLA-A2/Kb LMP2-/- mice, lacking the immunoproteasomes. Therefore, we can conclude that the expression of immunoproteasomes limits the induction of the anti-Melan-A T cell response. In a second part, we show that the in vitro degradation of a Melan-A26/27-35 precursor by the proteasomes produces both the final antigenic peptide and N-terminally extended intermediates. When human melanoma cells expressing the corresponding fragments were exposed to specific CTL, those expressing the minimal antigenic sequence were recognized more efficiently than those expressing the N-terminally extended intermediates. We demonstrated that the N-terminally extended intermediates were inefficiently trimmed by cytosolic proteases. These results imply that both proteasomes and post-proteasomal peptidases influence the availability of antigenic peptides and that the efficiency of presentation may be affected by conditions that alter the ratio between fully and partially processed proteasomal products. RESUME Le protéasome ainsi que d'autres protéases jouent un rôle essentiel dans l'apprêtement de la plupart des peptides antigéniques présentés par les molécules de MHC classe I. Il est donc particulièrement important de connaître les mécanismes menant à la production du peptide antigénique correct afin de pouvoir mieux définir de futurs vaccins. Nous avons utilisé la protéine associée au mélanome, Melan-A, contenant un épitope immunodominant Melan-A26/27-35/HLA-A*0201 contre lequel une fréquence élevée de lymphocytes T a été detectée dans plusieurs patients atteints de mélanome. Dans une première partie, nous avons étudié les effets de l'apprêtement du peptide antigéniques Melan-A26-35 sur l'induction de cellules T spécifiques dans la souris. Nos résultats ont démontré que l'immunoprotéasome, exprimé dans la plupart des cellules après exposition à de l'IFN-γ et exprimé constitutivement dans certaines cellules spécialisées, telles les cellules dendritiques, n'apprête pas efficacement le peptide antigénique Melan-A26-35 restreint par HLA-A2 in vitro. Nous avons produit des vecteurs lentiviraux recombinants ainsi que des virus vaccinia codant pour le peptide antigénique Melan-A26-35(A27L) et pour la protéine entière Melan-A(A27L). L'immunisation de souris HLA-A2/Kb avec ces virus démontre que l'immunoprotéasome affecte négativement l'induction d'une réponse T contre Melan¬-A dans les souris immunisées avec des virus contenant la séquence de la protéine entière. Cet effet négatif est complètement aboli dans les souris HLA-A2/Kb LMP2-/- qui n'expriment pas l'immunoprotéasome. Deuxièmement, nous avons demontré que la dégradation d'un peptide précurseur contenant Melan-A26/27-35 par le protéasome produit à la fois le peptide antigénique ainsi que des peptides rallongés à leurs extrémités N-terminales. Lorsque ces fragments sont exprimés dans des cellules humaines et exposés à des cellules T cytotoxiques (CTL), celles qui expriment le peptide antigénique final sont reconnus plus efficacement que celles exprimant les peptides rallongés en N-terminus. Nous avons démontré que les peptides rallongés en N-terminus ne sont pas apprêtés efficacement par les peptidases du cytosol. L'inefficacité de l'apprêtement des peptides rallongés dans le cytosol offre un certain avantage pour les peptides directement produits par le protéasome. Ces résultats impliquent donc que le protéasome ainsi que les peptidases post-proteasomales influencent l'accessibilité des peptides antigéniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a beta(1) subunit. Wild-type beta(1a) subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Ca(v)1.2 and alpha(2)delta2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length beta(1a) subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the beta(1a) subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of beta(2) calcium channel subunits can be confirmed and extended to the beta(1) calcium channel subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The slow vacuolar (SV) channel, a Ca2+-regulated vacuolar cation conductance channel, in Arabidopsis thaliana is encoded by the single-copy gene AtTPC1. Although loss-of-function tpc1 mutants were reported to exhibit a stoma phenotype, knowledge about the underlying guard cell-specific features of SV/TPC1 channels is still lacking. Here we demonstrate that TPC1 transcripts and SV current density in guard cells were much more pronounced than in mesophyll cells. Furthermore, the SV channel in motor cells exhibited a higher cytosolic Ca2+ sensitivity than in mesophyll cells. These distinct features of the guard cell SV channel therefore probably account for the published stomatal phenotype of tpc1-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arenaviruses are rodent-born world-wide distributed negative strand RNA viruses that comprise a number of important human pathogens including Lassa virus (LASV) which causes more than 3 00'000 infections annually in Western Africa. Lymphocytic choriomeningitis virus (LCMV) is the prototypic member of the arenavirus family, which is divided in two major subgroups according to serological properties and geographical distribution, the Old World and New World arenaviruses. The envelope glycoprotein precursors (GPCs) of arenaviruses have to undergo proteolytic processing to acquire biological function and to be incorporated into progeny virions. A cellular enzyme is responsible for this processing: the Subtilisin Kexin Isozyme-1 or Site-1 protease (SKI- 1/S1P). In this thesis we have studied the relationship between SKI-1/S1P and the envelope GPs of arenaviruses. In a first project, we investigated the molecular interactions between SKI-1/SIP and arenavirus GPCs. Using SKI-1/SIP mutants, we confirmed previously published observations locating LCMV GPC and LASV GPC processing in the Late Golgi/TGN and ER/cis-Golgi, respectively. A single mutation in the cleavage site of LCMV was sufficient to re-locate SKI- 1/SIP-mediated processing from the late Golgi/TGN to the ER/cis-Golgi. We then demonstrated that the transmembrane domain, the C-terminal tail and the phosphorylation sites of SKI-1/S1P are dispensable for GPC processing. Additionally we identified a SKI- 1/S1P mutant defective for autoprocessing at site Β, B' that was selectively impaired in processing of viral GPCs but not cellular substrates. We also showed that a soluble variant of SKI-1/SIΡ was unable to cleave envelope GPs at the cell surface when added in the culture medium. This study highlighted a new target for small molecule inhibitors that would specifically impair GPC but not cellular substrate processing. In a second project, we identified and characterized two residues: LASV GPC Y253 and SKI-1/S1P Y285 that are important for the SKI-1/SIP-mediated LASV GPC cleavage. An alignment of GPC sequences revealed a conserved aromatic residue in P7 position in the GPCs of Old World and Clade C of New World arenaviruses. Mutations in GPC at position P7 impaired processing efficiency. In SKI-1/S1P, mutating Y285 into A negatively affected processing of substrates containing aromatic residues in P7, without affecting others. This property could be used to develop specific drugs targeting SKI-1/SIP-mediated cleavage of LASV GPC without affecting cellular substrates. As a third project we studied the role of the SKI-1/SIP-mediated processing and the unusual stable signal peptide (SSP) for the folding and secretion of soluble forms of the ectodomain of LASV and LCMV glycoproteins. We provide evidence that the transmembrane domain and the cytosolic tail are crucial for the stability of the prefusion conformation of arenavirus GP and that the SSP is required for transport and processing of full-length GP, but not the soluble ectodomain per se. Taken together, these results will lead to a better understanding of the complex interactions between arenavirus GPCs and SKI-1/S IP, paving the avenue for the development of novel anti-arenaviral therapeutics. - Les Arenavirus sont des virus à ARN négatif distribués mondialement et portés par les rongeurs. Cette famille de virus comprend des virus hautement pathogènes pour l'homme comme le virus de Lassa (LASV) qui cause plus de 300Ό00 infections par année en Afrique de l'Ouest. Le virus de la chorioméningite lymphocytaire (LCMV) est le représentant de cette famille qui est divisée en deux sous-groupes selon des critères sérologiques et de distributions géographiques: arenavirus du Nouveau et de l'Ancien monde. Les glycoprotéines d'enveloppe de ces virus (GPCs) doivent être clivées pour être incorporées dans le virus et ainsi lui permettre d'être infectieux. Une enzyme cellulaire est responsable de ce clivage : la Subtilisin Kexin Isozyme-1 ou protéase Site-1 (SKI-l/SlP). Dans cette thèse, nous avons étudié la relation entre cette enzyme cellulaire et les GPs des arenavirus. Dans un premier temps, nous avons étudié les interactions moléculaires entre SKI- 1/S1P et GPC. A l'aide de mutants de SKI-l/SlP, nous avons confirmé des résultats précédemment publiés montrant que les glycoprotéines d'enveloppe de LASV sont clivés dans le réticulum endoplasmique/cis-Golgi alors que celles de LCMV sont clivées dans le Golgi tardif/TGN. Une seule mutation dans le site de clivage de la glycoprotéine de LCMV est suffisante pour changer le compartiment cellulaire dans lequel est clivée cette glycoprotéine. Ensuite, nous avons démontré que le domaine transmembranaire, la partie cytosolique C-terminale ainsi que les sites de phosphorylations de cette enzyme ne sont pas indispensables pour permettre le clivage de GPC. De plus, nous avons identifié un mutant de SKI-l/SlP dans lequel Γ autoprocessing au site B,B' est impossible, incapable de cliver GPC mais toujours pleinement fonctionnelle envers ses substrats cellulaires. Nous avons également démontré qu'une forme soluble de SKI-l/SlP ajoutée dans le milieu de culture n'est pas capable de couper GPC à la surface de la cellule. Cette étude a défini une nouvelle cible potentielle pour un médicament qui inhiberait le clivage des glycoprotéines des arenavirus sans affecter les processus normaux de la cellule. Dans un second project, nous avons identifié deux acides aminés, LASV GPC Y253 et SKI-l/SlP Y285, qui sont important pour le clivage de LASV GPC. Un alignement des séquences de clivage des GPCs a montré qu'un résidu aromatique est conservé en position P7 du site de clivage chez tous les arenavirus de l'Ancien monde et dans le clade C des arenavirus du Nouveau monde. Une mutation de cet acide aminée dans GPC réduit l'efficacité de clivage par SKI-l/SlP. Mutation de la tyrosine 285 de SKI-l/SlP en alanine affecte négativement le clivage des substrats contenant un résidu aromatique en position P7 sans affecter les autres. Cette propriété pourrait être utilisée pour le développement de médicaments spécifiques ciblant le clivage de GPC. Finalement, nous avons étudié le rôle du processing accomplit par SKI-l/SlP et du signal peptide pour le pliage et la sécrétion de formes solubles des glycoprotéines de LASV et LCMV. Nous avons montré que le domaine transmembranaire et la partie cytosolique de GP sont crucials pour la stabilité de la conformation pre-fusionnelle des GPs et que SSP est nécessaire pour le transport et le processing de GP, mais pas de son ecto-domaine soluble. En conclusion, les résultats obtenus durant cette thèse permettrons de mieux comprendre les interactions complexes entre SKI-l/SlP et les glycoprotéines des arenavirus, ouvrant le chemin pour le développement de nouveaux médicaments anti-arénaviraux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansiprecludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF) of T. b.brucei: (i) fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes) and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme) in glycosomes, (ii) enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes) and a GAPDH isoenzyme in the cytosol, (iii) malate dehydrogenase in cytosol and (iv) glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansiis alike to the BSF of T. b. bruceiin glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Murine macrophages activated by interferon-gamma and lipopolysaccharide become leishmanicidal through a process involving L-arginine-derived nitrogen oxidation products. Both nitrite secretion and parasite killing by activated macrophages were inhibited by 3-amino-1,2,4-triazole as well as the related compound, 3-amino-1,2,4-triazine. Moreover, NO synthase activity in cytosolic extracts of activated cells was inhibited by both compounds. 4-amino-1,2,4-triazole, an isomer of 3-amino-1,2,4-triazole, was without effect. Our results suggest that besides its known inhibitory effect on catalases and peroxidases, 3-amino-1,2,4-triazole is an inhibitor of NO synthase. The resemblance between the tautomeric form of 3-amino-1,2,4-triazole and the guanidino group of L-arginine, the natural substrate for NO synthase, might be responsible for the observed inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na(+) balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na(+) transport via the epithelial Na(+) channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na(+) reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na(+) transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na(+) reabsorption and hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DP1, a dimerization partner protein of the transcription factor E2F, is known to inhibit Wnt/β-catenin signalling along with E2F, although the function of DP1 itself was not well characterized. Here, we present a novel dual regulatory mechanism of Wnt/β-catenin signalling by DP1 independent from E2F. DP1 negatively regulates Wnt/β-catenin signalling by inhibiting Dvl-Axin interaction and by enhancing poly-ubiquitination of β-catenin. In contrast, DP1 positively modulates the signalling upon Wnt stimulation, via increasing cytosolic β-catenin and antagonizing the kinase activity of NLK. In Xenopus embryos, DP1 exerts both positive and negative roles in Wnt/β-catenin signalling during anteroposterior neural patterning. From subcellular localization analyses, we suggest that the dual roles of DP1 in Wnt/β-catenin signalling are endowed by differential nucleocytoplasmic localizations. We propose that these dual functions of DP1 can promote and stabilize biphasic Wnt-on and Wnt-off states in response to a gradual gradient of Wnt/β-catenin signalling to determine differential cell fates.