968 resultados para Curves, Plane.
Resumo:
Let O be a monomial curve in the affine algebraic e-space over a field K and P be the relation ideal of O. If O is defined by a sequence of e positive integers some e - 1 of which form an arithmetic sequence then we construct a minimal set of generators for P and write an explicit formula for mu(P).
Resumo:
Flow visualization studies of plane laminar bubble plumes have been conducted to yield quantitative data on transition height, wavelength and wave velocity of the most unstable disturbance leading to transition. These are believed to be the first results of this kind. Most earlier studies are restricted to turbulent bubble plumes. In the present study, the bubble plumes were generated by electrolysis of water and hence very fine control over bubble size distribution and gas flow rate was possible to enable studies with laminar bubble plumes. Present observations show that (a) the dominant mode of instability in plane bubble plumes is the sinuous mode, (b) transition height and wavelength are related linearly with the proportionality constant being about 4, (c) wave velocity is about 40 % of the mean plume velocity, and (d) normalized transition height data correlate very well with a source Grashof number. Some agreement and some differences in transition characteristics of bubble plumes have been observed compared to those for similar single-phase flows.
Resumo:
The granular flow down an inclined plane is simulated using the discrete element (DE) technique to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model First, we examine the average coordination number for the particles in the flow down an inclined plane using the DE technique using the linear contact model with and without friction, and the Hertzian contact model with friction The simulations show that the average coordination number decreases below 1 for values of the spring stiffness corresponding to real materials, such as sand and glass, even when the angle of inclination is only 10 larger than the angle of repose Additional measures of correlations in the system, such as the fraction of particles with multibody contact, the force ratio (average ratio of the magnitudes of the largest and the second largest force on a particle), and the angle between the two largest forces on the particle, show no evidence of force chains or other correlated motions in the system An analysis of the bond-orientational order parameter indicates that the flow is in the random state, as in event-driven (ED) simulations V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are compared with the theory V Kumaran, J Fluid Mech 632, 107 (2009), J Fluid Mech 632, 145 (2009)] and are found to be in quantitative agreement In addition, we also conduct a comparison of the collision frequency and the distribution of the precollisional relative velocities of particles in contact The strong correlation effects exhibited by these two quantities in event-driven simulations V Kumaran, J Fluid Mech 632, 145 (2009)] are also found in the DE simulations (C) 2010 American Institute of Physics doi 10 1063/1 3504660]
Resumo:
Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 - 2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 - 2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434-3.442 eV. The film grown at 800 degrees C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have modeled the rotation curves of 21 galaxies observed by Amram et al. (1992), by combining the effects of rigid rotation, gravity, and turbulence. The main motivation behind such modeling is to study the formation of coherent structures in turbulent media and explore its role in the large-scale structures of the universe. The values of the parameters such as mass, turbulent velocity, and angular velocity derived from the rotation curve fits are in good agreement with those derived from the prevalent models.
Resumo:
We present an elementary combinatorial proof of the existence and uniqueness of the 9-vertex triangulation of C P2. The original proof of existence, due to Kuhnel, as well as the original proof of uniqueness, due to Kuhnel and Lassmann, were based on extensive computer search. Recently Arnoux and Marin have used cohomology theory to present a computer-free proof. Our proof has the advantage of displaying a canonical copy of the affine plane over the three-element field inside this complex in terms of which the entire complex has a very neat and short description. This explicates the full automorphism group of the Kuhnel complex as a subgroup of the automorphism group of this affine plane. Our method also brings out the rich combinatorial structure inside this complex.
Resumo:
In this article we consider a semigroup ring R = KGamma] of a numerical semigroup Gamma and study the Cohen- Macaulayness of the associated graded ring G(Gamma) := gr(m), (R) := circle plus(n is an element of N) m(n)/m(n+1) and the behaviour of the Hilbert function H-R of R. We define a certain (finite) subset B(Gamma) subset of F and prove that G(Gamma) is Cohen-Macaulay if and only if B(Gamma) = empty set. Therefore the subset B(Gamma) is called the Cohen-Macaulay defect of G(Gamma). Further, we prove that if the degree sequence of elements of the standard basis of is non-decreasing, then B(F) = empty set and hence G(Gamma) is Cohen-Macaulay. We consider a class of numerical semigroups Gamma = Sigma(3)(i=0) Nm(i) generated by 4 elements m(0), m(1), m(2), m(3) such that m(1) + m(2) = mo m3-so called ``balanced semigroups''. We study the structure of the Cohen-Macaulay defect B(Gamma) of Gamma and particularly we give an estimate on the cardinality |B(Gamma, r)| for every r is an element of N. We use these estimates to prove that the Hilbert function of R is non-decreasing. Further, we prove that every balanced ``unitary'' semigroup Gamma is ``2-good'' and is not ``1-good'', in particular, in this case, c(r) is not Cohen-Macaulay. We consider a certain special subclass of balanced semigroups Gamma. For this subclass we try to determine the Cohen-Macaulay defect B(Gamma) using the explicit description of the standard basis of Gamma; in particular, we prove that these balanced semigroups are 2-good and determine when exactly G(Gamma) is Cohen-Macaulay. (C) 2011 Published by Elsevier B.V.
Resumo:
The general equation for one-dimensional wave propagation at low flow Mach numbers (M less-than-or-equals, slant0·2) is derived and is solved analytically for conical and exponential shapes. The transfer matrices are derived and shown to be self-consistent. Comparison is also made with the relevant data available in the literature. The transmission loss behaviour of conical and exponential pipes, and mufflers involving these shapes, are studied. Analytical expressions of the same are given for the case of a stationary medium. The mufflers involving conical and exponential pipes are shown to be inferior to simple expansion chambers (of similar dimensions) at higher frequencies from the point of view of noise abatement, as was observed earlier experimentally.
Resumo:
Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
We present here a critical assessment of two vortex approaches (both two-dimensional) to the modelling of turbulent mixing layers. In the first approach the flow is represented by point vortices, and in the second it is simulated as the evolution of a continuous vortex sheet composed of short linear elements or ''panels''. The comparison is based on fresh simulations using approximately the same number of elements in either model, paying due attention in both to the boundary conditions far downstream as well as those on the splitter plate from which the mixing layer issues. The comparisons show that, while both models satisfy the well-known invariants of vortex dynamics approximately to the same accuracy, the vortex panel model, although ultimately not convergent, leads to smoother roll-up and values of stresses and moments that are in closer agreement with the experiment, and has a higher computational efficiency for a given degree of convergence on moments. The point vortex model, while faster for a given number of elements, produces an unsatisfactory roll-up which (for the number of elements used) is rendered worse by the incorporation of the Van der Vooren correction for sheet curvature.
Resumo:
We study the steady turn behaviours of some light motorcycle models on circular paths, using the commercial software package ADAMS-Motorcycle. Steering torque and steering angle are obtained for several path radii and a range of steady forward speeds. For path radii much greater than motorcycle wheelbase, and for all motorcycle parameters including tyre parameters held fixed, dimensional analysis can predict the asymptotic behaviour of steering torque and angle. In particular, steering torque is a function purely of lateral acceleration plus another such function divided by path radius. Of these, the first function is numerically determined, while the second is approximated by an analytically determined constant. Similarly, the steering angle is a function purely of lateral acceleration, plus another such function divided by path radius. Of these, the first is determined numerically while the second is determined analytically. Both predictions are verified through ADAMS simulations for various tyre and geometric parameters. In summary, steady circular motions of a given motorcycle with given tyre parameters can be approximately characterised by just one curve for steering torque and one for steering angle.