953 resultados para Crustal Assimilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of assessing the likelihood and extent of coastal flooding is hampered by the lack of detailed information on near-shore bathymetry. This is required as an input for coastal inundation models, and in some cases the variability in the bathymetry can impact the prediction of those areas likely to be affected by flooding in a storm. The constant monitoring and data collection that would be required to characterise the near-shore bathymetry over large coastal areas is impractical, leaving the option of running morphodynamic models to predict the likely bathymetry at any given time. However, if the models are inaccurate the errors may be significant if incorrect bathymetry is used to predict possible flood risks. This project is assessing the use of data assimilation techniques to improve the predictions from a simple model, by rigorously incorporating observations of the bathymetry into the model, to bring the model closer to the actual situation. Currently we are concentrating on Morecambe Bay as a primary study site, as it has a highly dynamic inter-tidal zone, with changes in the course of channels in this zone impacting the likely locations of flooding from storms. We are working with SAR images, LiDAR, and swath bathymetry to give us the observations over a 2.5 year period running from May 2003 – November 2005. We have a LiDAR image of the entire inter-tidal zone for November 2005 to use as validation data. We have implemented a 3D-Var data assimilation scheme, to investigate the improvements in performance of the data assimilation compared to the previous scheme which was based on the optimal interpolation method. We are currently evaluating these different data assimilation techniques, using 22 SAR data observations. We will also include the LiDAR data and swath bathymetry to improve the observational coverage, and investigate the impact of different types of observation on the predictive ability of the model. We are also assessing the ability of the data assimilation scheme to recover the correct bathymetry after storm events, which can dramatically change the bathymetry in a short period of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent observations from the Argo dataset of temperature and salinity profiles are used to evaluate a series of 3-year data assimilation experiments in a global ice–ocean general circulation model. The experiments are designed to evaluate a new data assimilation system whereby salinity is assimilated along isotherms, S(T ). In addition, the role of a balancing salinity increment to maintain water mass properties is investigated. This balancing increment is found to effectively prevent spurious mixing in tropical regions induced by univariate temperature assimilation, allowing the correction of isotherm geometries without adversely influencing temperature–salinity relationships. In addition, the balancing increment is able to correct a fresh bias associated with a weak subtropical gyre in the North Atlantic using only temperature observations. The S(T ) assimilation method is found to provide an important improvement over conventional depth level assimilation, with lower root-mean-squared forecast errors over the upper 500 m in the tropical Atlantic and Pacific Oceans. An additional set of experiments is performed whereby Argo data are withheld and used for independent evaluation. The most significant improvements from Argo assimilation are found in less well-observed regions (Indian, South Atlantic and South Pacific Oceans). When Argo salinity data are assimilated in addition to temperature, improvements to modelled temperature fields are obtained due to corrections to model density gradients and the resulting circulation. It is found that observations from the Argo array provide an invaluable tool for both correcting modelled water mass properties through data assimilation and for evaluating the assimilation methods themselves.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we make an initial step toward the development of an ocean assimilation system that can constrain the modelled Atlantic Meridional Overturning Circulation (AMOC) to support climate predictions. A detailed comparison is presented of 1° and 1/4° resolution global model simulations with and without sequential data assimilation, to the observations and transport estimates from the RAPID mooring array across 26.5° N in the Atlantic. Comparisons of modelled water properties with the observations from the merged RAPID boundary arrays demonstrate the ability of in situ data assimilation to accurately constrain the east-west density gradient between these mooring arrays. However, the presence of an unconstrained "western boundary wedge" between Abaco Island and the RAPID mooring site WB2 (16 km offshore) leads to the intensification of an erroneous southwards flow in this region when in situ data are assimilated. The result is an overly intense southward upper mid-ocean transport (0–1100 m) as compared to the estimates derived from the RAPID array. Correction of upper layer zonal density gradients is found to compensate mostly for a weak subtropical gyre circulation in the free model run (i.e. with no assimilation). Despite the important changes to the density structure and transports in the upper layer imposed by the assimilation, very little change is found in the amplitude and sub-seasonal variability of the AMOC. This shows that assimilation of upper layer density information projects mainly on the gyre circulation with little effect on the AMOC at 26° N due to the absence of corrections to density gradients below 2000 m (the maximum depth of Argo). The sensitivity to initial conditions was explored through two additional experiments using a climatological initial condition. These experiments showed that the weak bias in gyre intensity in the control simulation (without data assimilation) develops over a period of about 6 months, but does so independently from the overturning, with no change to the AMOC. However, differences in the properties and volume transport of North Atlantic Deep Water (NADW) persisted throughout the 3 year simulations resulting in a difference of 3 Sv in AMOC intensity. The persistence of these dense water anomalies and their influence on the AMOC is promising for the development of decadal forecasting capabilities. The results suggest that the deeper waters must be accurately reproduced in order to constrain the AMOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow is an important component of the land surface, and the choice of products for assimilation or verification can have a large impact on the surface analysis. This paper introduces the many sources of snow data that are currently available, both in situ and from remote sensing from space, along with some recent developments. Snow extent products are derived from the biggest range of sensors and are the most widely used, while information on snow mass from space is still too error-prone to be used successfully in assimilation schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research examined the conditions under which behavioral contrast would be observed in relation to ingroup and outgroup primes. The authors tested the hypothesis that differing levels of commitment to the ingroup would predict diverging behavioral responses to outgroup but not ingroup primes. Across two studies, featuring both age and gender groups, we found that ingroup identification predicted responses to outgroup primes with higher identifiers showing an increased tendency to contrast, that is, behave less like the outgroup, and more like the ingroup. Ingroup identification did not predict responses to ingroup primes. The implications of these findings for social comparison and social identity theories are discussed. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interface between satellite retrievals and the incremental version of the four-dimensional variational assimilation scheme is developed, making full use of the information content of satellite measurements. In this paper, expressions for the function that calculates simulated observations from model states (called “observation operator”), together with its tangent linear version and adjoint, are derived. Results from our work can be used for implementing a quasi-optimal assimilation of satellite retrievals (e.g., of atmospheric trace gases) in operational meteorological centres.