992 resultados para Crop Monitoring
Resumo:
A current Australian Learning and Teaching Council (ALTC) funded action research project aims to provide a set of practical resources founded on a social justice framework, to guide good practice for monitoring student learning engagement (MSLE) in higher education. The project involves ten Australasian institutions, eight of which are engaged in various MSLE type projects. A draft framework, consisting of six social justice principles which emerged from the literature has been examined with reference to the eight institutional approaches for MSLE in conjunction with the personnel working on these initiatives during the first action research cycle. The cycle will examine the strategic and operational implications of the framework in each of the participating institutions. Cycle 2 will also build capacity to embed the principles within the institutional MSLE program and will identify and collect examples and resources that exemplify the principles in practice. The final cycle will seek to pilot the framework to guide new MSLE initiatives. In its entirety, the project will deliver significant resources to the sector in the form of a social justice framework for MSLE, guidelines and sector exemplars for MSLE. As well as increasing the awareness amongst staff around the criticality of transition to university (thereby preventing attrition) and the significance of the learning and teaching agenda in enhancing student engagement, the project will build leadership capacity within the participating institutions and provide a knowledge base and institutional capacity for the Australasian HE sector to deploy the deliverables that will safeguard student learning engagement At this early stage of the project the workshop session provides an opportunity to discuss and examine the draft set of social justice principles and to discuss their potential value for the participants’ institutional contexts. Specifically, the workshop will explore critical questions associated with the principles.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.
Resumo:
Background: Although the potential to reduce hospitalisation and mortality in chronic heart failure (CHF) is well reported, the feasibility of receiving healthcare by structured telephone support or telemonitoring is not. Aims: To determine; adherence, adaptation and acceptability to a national nurse-coordinated telephone-monitoring CHF management strategy. The Chronic Heart Failure Assistance by Telephone Study (CHAT). Methods: Triangulation of descriptive statistics, feedback surveys and qualitative analysis of clinical notes. Cohort comprised of standard care plus intervention (SC + I) participants who completed the first year of the study. Results: 30 GPs (70% rural) randomised to SC + I recruited 79 eligible participants, of whom 60 (76%) completed the full 12 month follow-up period. During this time 3619 calls were made into the CHAT system (mean 45.81 SD ± 79.26, range 0-369), Overall there was an adherence to the study protocol of 65.8% (95% CI 0.54-0.75; p = 0.001) however, of the 60 participants who completed the 12 month follow-up period the adherence was significantly higher at 92.3% (95% CI 0.82-0.97, p ≤ 0.001). Only 3% of this elderly group (mean age 74.7 ±9.3 years) were unable to learn or competently use the technology. Participants rated CHAT with a total acceptability rate of 76.45%. Conclusion: This study shows that elderly CHF patients can adapt quickly, find telephone-monitoring an acceptable part of their healthcare routine, and are able to maintain good adherence for a least 12 months. © 2007.
Resumo:
This paper seeks to explore how organisations can effectively use performance management systems (PMS) to monitor collective identities. The monitoring of relationships between identity and an influential PMS—the balanced scorecard (BSC)—are explored. Drawing from identity and management accounting literature, this paper argues that identity products, patternings and processes are commonly positioned, monitored and interpreted through the multiple perspectives and levels of the BSC. Specifically, human, technical and organisational capital under the Learning and Growth perspective of the BSC can incorporate various identity measures that sustain the relative, distinctive and fluid nature of identities. The value of this research is to strengthen the theoretical grounds which position identity as an important dimension of organisational capital in PMS.
Resumo:
Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.
Resumo:
Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.
Resumo:
The main limitations with existing fungal spore traps are that they are stationary and cannot be used in inaccessible or remote areas of Australia. This may result in delayed assessment, possible spread of harmful crop infestations and loss of crop yield and productivity. Fitted with the developed smart spore trap the UAV can fly, detect and monitor spores of plant pathogens in areas which previously were almost impossible to monitor. The technology will allow for earlier detection of emergency plant pests (EPPs) incursions by providing efficient and effective airborne surveillance, helping to protect Australia’s crops, pastures and the environment. The project is led by the Cooperative Research Centre for National Plant Biosecurity, with ARCAA/ QUT, CSIRO and the Queensland Government also providing resources. The prototype airplane was exhibited at the Innovation in Australia event December 7.
Resumo:
Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.
Resumo:
As civil infrastructures such as bridges age, there is a concern for safety and a need for cost-effective and reliable monitoring tool. Different diagnostic techniques are available nowadays for structural health monitoring (SHM) of bridges. Acoustic emission is one such technique with potential of predicting failure. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). AEtechnique involves recording the stress waves bymeans of sensors and subsequent analysis of the recorded signals,which then convey information about the nature of the source. AE can be used as a local SHM technique to monitor specific regions with visible presence of cracks or crack prone areas such as welded regions and joints with bolted connection or as a global technique to monitor the whole structure. Strength of AE technique lies in its ability to detect active crack activity, thus helping in prioritising maintenance work by helping focus on active cracks rather than dormant cracks. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. One is the generation of large amount of data during the testing; hence an effective data analysis and management is necessary, especially for long term monitoring uses. Complications also arise as a number of spurious sources can giveAEsignals, therefore, different source discrimination strategies are necessary to identify genuine signals from spurious ones. Another major challenge is the quantification of damage level by appropriate analysis of data. Intensity analysis using severity and historic indices as well as b-value analysis are some important methods and will be discussed and applied for analysis of laboratory experimental data in this paper.
Resumo:
Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of insect pests. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 dimensions showed that, in both the horizontal and vertical directions and at all temperatures examined, insect numbers were positively correlated over short (0-5cm) distances, and negatively correlated over longer (≥10cm) distances. Analysis in 3 dimensions showed a similar pattern, with positive correlations over short distances and negative correlations at longer distances. At 35°C, insects were located significantly further from the grain surface than at 25 and 30°C. Dispersion metrics showed statistically significant aggregation in all cases. This is the first research using small sample units, high sampling intensities, and a range of temperatures, to show spatial structuring of R. dominica populations over short distances. This research will have significant implications for sampling in the stored grains industry.
Resumo:
Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
Analysing the condition of an asset is a big challenge as there can be many aspects which can contribute to the overall functional reliability of the asset that have to be considered. In this paper we propose a two-step functional and causal relationship diagram (FCRD) to address this problem. In the first step, the FCRD is designed to facilitate the analysis of the condition of an asset by evaluating the interdependence (functional and causal) relationships between different components of the asset with the help of a relationship diagram. This is followed by the advanced FCRD (AFCRD) which refines the information from the FCRD into a comprehensive and manageable format. This new two-step methodology for asset condition monitoring is tested and validated for the case of a water treatment plant. © IMechE 2012.
Resumo:
There has been substantial interest within the Australian sugar industry in product diversification as a means to reduce its exposure to fluctuating raw sugar prices and in order to increase its commercial viability. In particular, the industry is looking at fibrous residues from sugarcane harvesting (trash) and from sugarcane milling (bagasse) for cogeneration and the production of biocommodities, as these are complementary to the core process of sugar production. A means of producing surplus residue (biomass) is to process whole sugarcane crop. In this paper, the composition of different juices derived from different harvesting methods, viz. burnt cane with all trash extracted (BE), green cane with half of the trash extracted (GE), and green cane (whole sugarcane crop) with trash unextracted (GU), were investigated and the results and comparison presented. The determination of electrical conductivity, inorganic composition, and organic acids indicate that both GU and GE cane juice contain a higher proportion of soluble inorganic ions and ionisable organic acids, compared to BE cane juice. It is important to note that there are considerably higher levels of Na ions and citric acid, but relatively low P levels in the GU samples. A higher level of reducing sugars was analysed in the GU samples than the BE samples due to the higher proportion of impurities found naturally in sugarcane tops and leaves. The purity of the first expressed juice (FEJ) of GU cane was on average higher than that of FEJ of BE cane. Results also show that GU juices appear to contain higher levels of proteins and polysaccharides, with no significant difference in starch levels.