802 resultados para Critically-ill Patients
Resumo:
Background
It is unknown whether a conservative approach to fluid administration or deresuscitation (active removal of fluid using diuretics or renal replacement therapy) is beneficial following haemodynamic stabilisation of critically ill patients.
Purpose
To evaluate the efficacy and safety of conservative or deresuscitative fluid strategies in adults and children with acute respiratory distress syndrome (ARDS), sepsis or systemic inflammatory response syndrome (SIRS) in the post-resuscitation phase of critical illness.
Methods
We searched Medline, EMBASE and the Cochrane central register of controlled trials from 1980 to June 2016, and manually reviewed relevant conference proceedings from 2009 to the present. Two reviewers independently assessed search results for inclusion and undertook data extraction and quality appraisal. We included randomised trials comparing fluid regimens with differing fluid balances between groups, and observational studies investigating the relationship between fluid balance and clinical outcomes.
Results
Forty-nine studies met the inclusion criteria. Marked clinical heterogeneity was evident. In a meta-analysis of 11 randomised trials (2051 patients) using a random-effects model, we found no significant difference in mortality with conservative or deresuscitative strategies compared with a liberal strategy or usual care [pooled risk ratio (RR) 0.92, 95 % confidence interval (CI) 0.82–1.02, I2 = 0 %]. A conservative or deresuscitative strategy resulted in increased ventilator-free days (mean difference 1.82 days, 95 % CI 0.53–3.10, I2 = 9 %) and reduced length of ICU stay (mean difference −1.88 days, 95 % CI −0.12 to −3.64, I2 = 75 %) compared with a liberal strategy or standard care.
Conclusions
In adults and children with ARDS, sepsis or SIRS, a conservative or deresuscitative fluid strategy results in an increased number of ventilator-free days and a decreased length of ICU stay compared with a liberal strategy or standard care. The effect on mortality remains uncertain. Large randomised trials are needed to determine optimal fluid strategies in critical illness.
Resumo:
Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.
Resumo:
BACKGROUND: Given the expanding scope of extracorporeal membrane oxygenation (ECMO) and its variable impact on drug pharmacokinetics as observed in neonatal studies, it is imperative that the effects of the device on the drugs commonly prescribed in the intensive care unit (ICU) are further investigated. Currently, there are no data to confirm the appropriateness of standard drug dosing in adult patients on ECMO. Ineffective drug regimens in these critically ill patients can seriously worsen patient outcomes. This study was designed to describe the pharmacokinetics of the commonly used antibiotic, analgesic and sedative drugs in adult patients receiving ECMO. METHODS: This is a multi-centre, open-label, descriptive pharmacokinetic (PK) study. Eligible patients will be adults treated with ECMO for severe cardiac and/or respiratory failure at five Intensive Care Units in Australia and New Zealand. Patients will receive the study drugs as part of their routine management. Blood samples will be taken from indwelling catheters to investigate plasma concentrations of several antibiotics (ceftriaxone, meropenem, vancomycin, ciprofloxacin, gentamicin, piperacillin-tazobactum, ticarcillin-clavulunate, linezolid, fluconazole, voriconazole, caspofungin, oseltamivir), sedatives and analgesics (midazolam, morphine, fentanyl, propofol, dexmedetomidine, thiopentone). The PK of each drug will be characterised to determine the variability of PK in these patients and to develop dosing guidelines for prescription during ECMO. DISCUSSION: The evidence-based dosing algorithms generated from this analysis can be evaluated in later clinical studies. This knowledge is vitally important for optimising pharmacotherapy in these most severely ill patients to maximise the opportunity for therapeutic success and minimise the risk of therapeutic failure
Resumo:
Background: Extra corporeal membrane oxygenation (ECMO) is a complex rescue therapy used to provide cardiac and/or respiratory support for critically ill patients who have failed maximal conventional medical management. ECMO is based on a modified cardiopulmonary bypass (CPB) circuit, and can provide cardiopulmonary support for up-to several months. It can be used in a veno venous configuration for isolated respiratory failure, (VV-ECMO), or in a veno arterial configuration (VA-ECMO) where support is necessary for cardiac +/- respiratory failure. The ECMO circuit consists of five main components: large bore cannulae (access cannulae) for drainage of the venous system, and return cannulae to either the venous (in VV-ECMO) or arterial (in VA ECMO) system. An oxygenator, with a vast surface area of hollow filaments, allows addition of oxygen and removal of carbon dioxide; a centrifugal blood pump allows propulsion of blood through the circuit at upto 10 L/minute; a control module and a thermoregulatory unit, which allows for exact temperature control of the extra corporeal blood. Methods: The first successful use of ECMO for ARDS in adults occurred in 1972, and its use has become more commonplace over the last 30 years, supported by the improvement in design and biocompatibility of the equipment, which has reduced the morbidity associated with this modality. Whilst the use of ECMO in neonatal population has been supported by numerous studies, the evidence upon which ECMO was integrated into adult practice was substantially less robust. Results: Recent data, including the CESAR study (Conventional Ventilatory Support versus Extra corporeal membrane oxygenation for Severe Respiratory failure) has added a degree of evidence to the role of ECMO in such a patient population. The CESAR study analysed 180 patients, and confirmed that ECMO was associated with an improved rate of survival. More recently, ECMO has been utilized in numerous situations within the critical care area, including support in high-risk percutaneous interventions in cardiac catheter lab; the operating room, emergency department, as well in specialized inter-hospital retrieval services. The increased understanding of the risk:benefit profile of ECMO, along with a reduction in morbidity associated with its use will doubtless lead to a substantial rise in the utilisation of this modality. As with all extra-corporeal circuits, ECMO opposes the basic premises of the mammalian inflammation and coagulation cascade where blood comes into foreign circulation, both these cascades are activated. Anti-coagulation is readily dealt with through use of agents such as heparin, but the inflammatory excess, whilst less macroscopically obvious, continues un-abated. Platelet consumption and neutrophil activation occur rapidly, and the clinician is faced with balancing the need of anticoagulation for the circuit, against haemostasis in an acutely bleeding patient. Alterations in pharmacokinetics may result in inadequate levels of disease modifying therapeutics, such as antibiotics, hence paradoxically delaying recovery from conditions such as pneumonia. Key elements of nutrition and the innate immune system maysimilarly be affected. Summary: This presentation will discuss the basic features of ECMO to the nonspecialist, and review the clinical conundrum faced by the team treating these most complex cases.
Resumo:
Aim: To describe the positioning of patients managed in an intensive care unit (ICU); assess how frequently these patients were repositioned; and determine if any specific factors influenced how, why or when patients were repositioned in the ICU. Background: Alterations in body position of ICU patients are important for patient comfort and are believed to prevent and/or treat pressure ulcers, improve respiratory function and combat the adverse effects of immobility. There is a paucity of research on the positioning of critically ill patients in Saudi Arabian ICUs. Design and Methods: A prospective observational study was undertaken. Participant demographic data were collected as were clinical factors (i.e. ventilation status, primary diagnosis, co-morbidities and Ramsay sedation score) and organizational factors (i.e. time of day, type of mattress or beds used, nurse/patient ratio and the patient's position). Clinical and some organization data were recorded over a continuous 48 hour period. Result: Twenty-eight participants were recruited to the study. No participant was managed in either a flat or prone position. Obese participants were most likely to be managed in a supine position. The mean time between turns was two hours. There was no significant association between the mean time between turns and the recorded variables related to patients' demographic and organizational considerations. Conclusion: Results indicate that patient positioning in the ICU was a direct result of unit policy - it appeared that patients were not repositioned based upon evaluation of their clinical condition but rather according to a two-hour ICU timetable
Resumo:
Background: Critically ill patients are at high risk for pressure ulcer (PrU) development due to their high acuity and the invasive nature of the multiple interventions and therapies they receive. With reported incidence rates of PrU development in the adult critical care population as high as 56%, the identification of patients at high risk of PrU development is essential. This paper will explore the association between PrU development and risk factors. It will also explore PrU development and the use of risk assessment scales for critically ill patients in adult intensive care units. Method: A literature search from 2000 to 2012 using the CINHAL, Cochrane Library, EBSCOHost, Medline (via EBSCOHost), PubMed, ProQuest and Google Scholar databases was conducted. Key words used were: pressure ulcer/s; pressure sore/s; decubitus ulcer/s; bed sore/s; critical care; intensive care; critical illness; prevalence; incidence; prevention; management; risk factor; risk assessment scale. Results: Nineteen articles were included in this review; eight studies addressing PrU risk factors, eight studies addressing risk assessment scales and three studies overlapping both. Results from the studies reviewed identified 28 intrinsic and extrinsic risk factors which may lead to PrU development. Development of a risk factor prediction model in this patient population, although beneficial, appears problematic due to many issues such as diverse diagnoses and subsequent patient needs. Additionally, several risk assessment instruments have been developed for early screening of patients at higher risk of developing PrU in the ICU. No existing risk assessment scales are valid for identification high risk critically ill patient,with the majority of scales potentially over-predicting patients at risk for PrU development. Conclusion: Research studies to inform the risk factors for potential pressure ulcer development are inconsistent. Additionally, there is no consistent or clear evidence which demonstrates any scale to better or more effective than another when used to identify the patients at risk for PrU development. Furthermore robust research is needed to identify the risk factors and develop valid scales for measuring the risk of PrU development in ICU.
Resumo:
AIM The aim of this paper was to review the current discourse in relation to intensive care unit (ICU) delirium. In particular, it will discuss the predisposing and contributory factors associated with delirium's development as well as effects of delirium on patients, staff and family members. BACKGROUND Critically ill patients are at greater risk of developing delirium and, with an ageing population and increased patient acuity permitted by medical advances, delirium is a growing problem in the ICU. However, there is a universal consensus that the definition of ICU delirium needs improvement to aid its recognition and to ensure both hypoalert-hypoactive and hyperalert-hyperactive variants are easily and readily identified. RELEVANCE TO CLINICAL PRACTICE The effects of ICU delirium have cost implications to the National Health Service in terms of prolonged ventilation and length of hospital stay. The causes of delirium can be readily classified as either predisposing or precipitating factors, which are organic in nature and commonly reversible. However, contributory factors also exist to exacerbate delirium and having an awareness of all these factors promises to aid prevention and expedite treatment. This will avoid or limit the host of adverse physiological and psychological consequences that delirium can provoke and directly enhance both patient and staff safety. CONCLUSIONS Routine screening of all patients in the ICU for the presence of delirium is crucial to its successful management. Nurses are on the front line to detect, manage and even prevent delirium.
Resumo:
In his letter Cunha suggests that oral antibiotic therapy is safer and less expensive than intravenous therapy via central venous catheters (CVCs) (1). The implication is that costs will fall and increased health benefits will be enjoyed resulting in a gain in efficiency within the healthcare system. CVCs are often used in critically ill patients to deliver antimicrobial therapy, but expose patients to a risk of catheter-related bloodstream infection (CRBSI). Our current knowledge about the efficiency (i.e. costeffectiveness) of allocating resources toward interventions that prevent CRBSI in patients requiring a CVC has already been reviewed (2). If for some patient groups antimicrobial therapy can be delivered orally, instead of through a CVC, then the costs and benefits of this alternate strategy should be evaluated...
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.