970 resultados para Criticality (Nuclear engineering)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach – An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings – The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications – The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value – The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses the reliability of an IGBT power electronics module. This work is part of a major UK funded initiative into the design, packaging and reliability of power electronic modules. The predictive methodology combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for these type of power electronic module structures. The paper details results for solder joint failure substrate solder. Finite element method modeling techniques have been used to predict the stress and strain distribution within the module structures. Together with accelerated life testing, these results have provided a failure model for these joints which has been used to predict reliability of a rail traction application

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heating in an idealised polymer load in a novel open-ended variable frequency microwave oven is numerically simulated using a couple solver approach. The frequency-agile microwave oven bonding system (FAMOBS)is developed to meet rapid polymer curing requirements in microelectronics and optoelectronics manufacturing. The heating of and idealised polymer load has been investigated through numerical modelling. Assessment of the system comprises of simulation of electromagnetic fields and of temperature distribution within the load. Initial simulation results are presented and contrasted with experimental analysis of field distribution

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – A small size cold crucible offers possibilities for melting various electrically conducting materials with a minimal wall contact. Such small samples can be used for express contamination analysis, preparing limited amounts of reactive alloys or experimental material analyses. Aims to present a model to follow the melting process. Design/methodology/approach – The presents a numerical model in which different types of axisymmetric coil configurations are analysed. Findings – The presented numerical model permits dynamically to follow the melting process, the high-frequency magnetic field distribution change, the free surface and the melting front evolution, and the associated turbulent fluid dynamics. The partially solidified skin on the contact to the cold crucible walls and bottom is dynamically predicted. The segmented crucible shape is either cylindrical, hemispherical or arbitrary shaped. Originality/value – The model presented within the paper permits the analysis of melting times, melt shapes, electrical efficiency and particle tracks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are prime examples of potential technologies needing to be addressed in the world problem of global warming/carbon emission etc. Power electronics are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper presents a 'virtual' design methodology together with theoretical and experimental results that demonstrate enhanced product design with improved reliability, performance and cost value within competitive schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This presentation discusses latest developments in SiP technology and the challenges for design in terms of manufacture and reliability. It presents results from a UK government funded project that aims to develop modelling techniques that will assess the thermo-mechanical reliability of SiP structures such as (i) stacked die, (ii) side-by-side dies and (iii) embedded die. Finite element analysis coupled with numerical optimisation and uncertainty analysis is used is used to model the reliability of a particular package design. In particular, the damage (energy density) in the lead free solder interconnects under accelerated temperature cycling is predicted and used to observe the fatigue life-time. Warpage of the structure is also investigated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the growth in computing power, and advances in numerical methods for the solution of partial differential equations, modeling technologies based around computational fluid dynamics, finite element analysis and optimisation are now being widely used by researchers and industry. Polymer and adhesive materials are now being widely used in electronic and photonic devices. This paper will illustrate the use of modeling tools to predict the behaviour of these materials from product assembly to its performance and reliability.