724 resultados para Covariant Plasmas
Resumo:
Understanding the emergence of extreme opinions and in what kind of environment they might become less extreme is a central theme in our modern globalized society. A model combining continuous opinions and observed discrete actions (CODA) capable of addressing the important issue of measuring how extreme opinions might be has been recently proposed. In this paper I show extreme opinions to arise in a ubiquitous manner in the CODA model for a multitude of social network structures. Depending on network details reducing extremism seems to be possible. However, a large number of agents with extreme opinions is always observed. A significant decrease in the number of extremists can be observed by allowing agents to change their positions in the network.
Resumo:
Plasma edge turbulence in Tokamak Chauffage Alfven Bresilien (TCABR) [R. M. O. Galvao et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences. (C) 2008 American Institute of Physics.
Resumo:
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]
Resumo:
In this work, we investigate the interplay between surface anchoring and finite-size effects on the smectic-isotropic transition in free-standing smectic films. Using an extended McMillan model, we study how a homeotropic anchoring stabilizes the smectic order above the bulk transition temperature. In particular, we determine how the transition temperature depends on the surface ordering and film thickness. We identify a characteristic anchoring for which the transition temperature does not depend on the film thickness. For strong surface ordering, we found that the thickness dependence of the transition temperature can be well represented by a power-law relation. The power-law exponent exhibits a weak dependence on the range of film thicknesses, as well as on the molecular alkyl tail length. Our results reproduce the main experimental findings concerning the layer-thinning transitions in free-standing smectic films.
Resumo:
We report numerically and analytically estimated values for the Hurst exponent for a recently proposed non-Markovian walk characterized by amnestically induced persistence. These results are consistent with earlier studies showing that log-periodic oscillations arise only for large memory losses of the recent past. We also report numerical estimates of the Hurst exponent for non-Markovian walks with diluted memory. Finally, we study walks with a fractal memory of the past for a Thue-Morse and Fibonacci memory patterns. These results are interpreted and discussed in the context of the necessary and sufficient conditions for the central limit theorem to hold.
Resumo:
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of four phases, for this system: (i) classical nonpersistence, (ii) classical persistence, (iii) log-periodic nonpersistence, and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however, log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
Resumo:
Consider N sites randomly and uniformly distributed in a d-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last mu (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycle). For one-dimensional systems, travelers can or cannot explore all available space, giving rise to a crossover between localized and extended regimes at the critical memory mu(1) = log(2) N. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter T (temperature). In this case, the walker movement is driven by a probability density function parameterized by T and a cost function. The cost function increases as the distance between two sites and favors hops to closer sites. As the temperature increases, the walker can escape from cycles that are reminiscent of the deterministic nature and extend the exploration. Here, we report an analytical model and numerical studies of the influence of the temperature and the critical memory in the exploration of one-dimensional disordered systems.
Resumo:
Consider a random medium consisting of N points randomly distributed so that there is no correlation among the distances separating them. This is the random link model, which is the high dimensionality limit (mean-field approximation) for the Euclidean random point structure. In the random link model, at discrete time steps, a walker moves to the nearest point, which has not been visited in the last mu steps (memory), producing a deterministic partially self-avoiding walk (the tourist walk). We have analytically obtained the distribution of the number n of points explored by the walker with memory mu=2, as well as the transient and period joint distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases mu=1 (memoryless walker, driven by extreme value statistics) and mu=2 (walker with memory, driven by combinatorial statistics). In the mu=1 case, the mean newly visited points in the thermodynamic limit (N >> 1) is just < n >=e=2.72... while in the mu=2 case, the mean number < n > of visited points grows proportionally to N(1/2). Also, this result allows us to establish an equivalence between the random link model with mu=2 and random map (uncorrelated back and forth distances) with mu=0 and the abrupt change between the probabilities for null transient time and subsequent ones.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.
Resumo:
It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help understand the mechanism behind this double resonance phenomenon.
Resumo:
This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624551]
Resumo:
An analysis of the experimental conditions under which low-frequency (70-150 kHz) Alfven eigertmodes (AE) are excited during the monster sawtooth in Joint European Torus [F Romanelli et al, Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, 2008] is presented for the specific case of a discharge with ion cyclotron heating (5 MW) Using a simplified AE model for modes excited at the Alfven wave continuum maximum with geodesic corrections taken into account, the temporal evolution of the value of the safety factor q(0) at the magnetic axis is determined We describe a new scheme to determine the time variation of q(0) that works under conditions in which other standard diagnostics, such as the motional Stark effect do not give reliable results such as during a monster sawtooth [doi 10 1063/1 3494212]