985 resultados para Coupled Oscillators System
Resumo:
Retinal neurons with distinct dendritic morphologies are likely to comprise different cell types, subject to three important caveats. First, it is necessary to avoid creating “artificial” cell types based on arbitrary criteria—for example, the presence of two or three primary dendrites. Second, it is essential to take into account changes in morphology with retinal eccentricity and cell density. Third, the retina contains imperfections like any natural system and a significant number of retinal neurons display aberrant morphologies or make aberrant connections that are not typical of the population as a whole. Many types of retinal ganglion cells show diverse patterns of tracer coupling, with the simplest pattern represented by the homologous coupling shown by On-Off direction-selective (DS) ganglion cells in the rabbit retina. Neighboring DS ganglion cells with a common preferred direction have regularly spaced somata and territorial dendritic fields, whereas DS ganglion cells with different preferred directions may have closely spaced somata and overlapping dendritic fields.
Resumo:
In temporal lobe epilepsy (TLE) seizures, tonic or clonic motor behaviors (TCB) are commonly associated with automatisms, versions, and vocalizations, and frequently occur during secondary generalization. Dystonias are a common finding and appear to be associated with automatisms and head deviation, but have never been directly linked to generalized tonic or clonic behaviors. The objective of the present study was to assess whether dystonias and TCB are coupled in the same seizure or are associated in an antagonistic and exclusive pattern. Ninety-one seizures in 55 patients with TLE due to mesial temporal sclerosis were analyzed. Only patients with postsurgical seizure outcome of Engel class I or II were included. Presence or absence of dystonia and secondary generalization was recorded. Occurrence of dystonia and occurrence of bilateral tonic or clonic behaviors were negatively correlated. Dystonia and TCB may be implicated in exclusive, non-coincidental, or even antagonistic effects or phenomena in TLE seizures. A neural network related to the expression of one behavioral response (e.g., basal ganglia activation and dystonia) might theoretically ""displace"" brain activation or disrupt the synchronism of another network implicated in pathological circuit reverberation and seizure expression. The involvement of basal ganglia in the blockade of convulsive seizures has long been observed in animal models. The question is: Do dystonia and underlying basal ganglia activation represent an attempt of the brain to block imminent secondary generalization? (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The acousto-ultrasonic (AU) input-output characteristics for contact-type transmitting and receiving transducers coupled to composite laminated plates are considered in this paper. Combining a multiple integral transform method, an ordinary discrete layer theory for the laminates and some simplifying assumptions for the electro-mechanical transduction behaviour of the transducers, an analytical solution is developed which can deal with all the wave processes involved in the AU measurement system, i.e, wave generation, wave propagation and wave reception. The spectral response of the normal contact pressure sensed by the receiving transducer due to an arbitrary input pulse excited by the transmitting transducer is obtained. To validate the new analytical-numerical spectral technique in the low-frequency regime, the results are compared with Mindlin plate theory solutions. Based on the analytical results, numerical calculations are carried out to investigate the influence of various external parameters such as frequency content of the input pulse, transmitter/receiver spacing and transducer aperture on the output of the measurement system. The results show that the presented analytical-numerical procedure is an effective tool for understanding the input-output characteristics of the AU technique for laminated plates. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.
Resumo:
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.
Resumo:
We analyzed the mouse Representative Transcript and Protein Set for molecules involved in brain function. We found full-length cDNAs of many known brain genes and discovered new members of known brain gene families, including Family 3 G-protein coupled receptors, voltage-gated channels, and connexins. We also identified previously unknown candidates for secreted neuroactive molecules. The existence of a large number of unique brain ESTs suggests an additional molecular complexity that remains to be explored. A list of genes containing CAG stretches in the coding region represents a first step in the potential identification of candidates for hereditary neurological disorders.
Resumo:
A model describing coherent quantum tunnelling between two trapped Bose-Einstein condensates is discussed. It is not well known that the model admits an exact solution, obtained some time ago, with the energy spectrum derived through the algebraic Bethe ansatz. An asymptotic analysis of the Bethe ansatz equations leads us to explicit expressions for the energies of the ground and the first excited states in the limit of weak tunnelling and all energies for strong tunnelling. The results are used to extract the asymptotic limits of the quantum fluctuations of the boson number difference between the two Bose-Einstein condensates and to characterize the degree of coherence in the system.
Resumo:
Nowadays, different techniques are available for manufacturing full-arch implant-supported prosthesis, many of them based on an impression procedure. Nevertheless, the long-term success of the prosthesis is highly influenced by the accuracy during such process, being affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of a 3D electromagnetic motion tracking system as an acquisition method for modeling such prosthesis. To this extent, we propose an implant acquisition method at the patient mouth, using a specific prototyped tool coupled with a tracker sensor, and a set of calibration procedures (for distortion correction and tool calibration), that ultimately obtains combined measurements of the implant’s position and angulation, and eliminating the use of any impression material. However, in the particular case of the evaluated tracking system, the order of magnitude of the obtained errors invalidates its use for this specific application.
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
In this work the mission control and supervision system developed for the ROAZ Autonomous Surface Vehicle is presented. Complexity in mission requirements coupled with flexibility lead to the design of a modular hierarchical mission control system based on hybrid systems control. Monitoring and supervision control for a vehicle such as ROAZ mission is not an easy task using tools with low complexity and yet powerful enough. A set of tools were developed to perform both on board mission control and remote planning and supervision. “ROAZ- Mission Control” was developed to be used in support to bathymetric and security missions performed in river and at seas.
Resumo:
in RoboCup 2007: Robot Soccer World Cup XI
Resumo:
An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010