1000 resultados para Counting 150-250 µm fraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction in sea ice along the SE Greenland coast during the last century has severely impacted ice-rafting to this area. In order to reconstruct ice-rafting and oceanographic conditions in the area of Denmark Strait during the last ~150 years, we conducted a multiproxy study on three short (20 cm) sediment cores from outer Kangerdlugssuaq Trough (~300 m water depth). The proxy-based data obtained have been compared with historical and instrumental data to gain a better understanding of the ice sheet-ocean interactions in the area. A robust chronology has been developed based on 210Pb and 137Cs measurements on core PO175GKC#9 (~66.2°N, 32°W) and expanded to the two adjacent cores based on correlations between calcite weight percent records. Our proxy records include sea-ice and phytoplankton biomarkers, and a variety of mineralogical determinations based on the <2 mm sediment fraction, including identification with quantitative x-ray diffraction, ice-rafted debris counts on the 63-150 µm sand fraction, and source identifications based on the composition of Fe oxides in the 45-250 µm fraction. A multivariate statistical analysis indicated significant correlations between our proxy records and historical data, especially with the mean annual temperature data from Stykkishólmur (Iceland) and the storis index (historical observations of sea-ice export via the East Greenland Current). In particular, the biological proxies (calcite weight percent, IP25, and total organic carbon %) showed significant linkage with the storis index. Our records show two distinct intervals in the recent history of the SE Greenland coast. The first of these (ad 1850-1910) shows predominantly perennial sea-ice conditions in the area, while the second (ad 1910-1990) shows more seasonally open water conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

here is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the "Clathrate Gun Hypothesis" (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacial millennial-scale paleoceanographic changes in the Southeast Pacific and the adjacent Southern Ocean are poorly known due to the scarcity of well-dated and high resolution sediment records. Here we present new surface water records from sediment core MD07-3128 recovered at 53°S off the Pacific entrance of the Strait of Magellan. The alkenone-derived sea surface temperature (SST) record reveals a very strong warming of ca. 8°C over the last Termination and substantial millennial-scale variability in the glacial section largely consistent with our planktonic foraminifera oxygen isotope (d18O) record of Neogloboquadrina pachyderma (sin.). The timing and structure of the Termination and some of the millennial-scale SST fluctuations are very similar to those observed in the well-dated SST record from ODP Site 1233 (41°S) and the temperature record from Drowning Maud Land Antarctic ice core supporting the hemispheric-wide Antarctic timing of SST changes. However, differences in our new SST record are also found including a long-term warming trend over Marine Isotope Stage (MIS) 3 followed by a cooling toward the Last Glacial Maximum (LGM). We suggest that these differences reflect regional cooling related to the proximal location of the southern Patagonian Ice Sheet and related meltwater supply at least during the LGM consistent with the fact that no longer SST cooling trend is observed in ODP Site 1233 or any SST Chilean record. This proximal ice sheet location is documented by generally higher contents of ice rafted debris (IRD) and tetra-unsaturated alkenones, and a slight trend toward lighter planktonic d18O during late MIS 3 and MIS 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A core from the Mid-Atlantic Ridge at 43.5°N and ~3 km water depth shows distinct evidence of the deglacial events known as Heinrich event 1 (probably the marine equivalent of Oldest Dryas cooling in Europe) and the Younger Dryas. The Heinrich event, dated at three levels to between 14.3 and 15.0 ka, is marked by a minimum in foraminifera per gram, by maxima in rates of sedimentation, ice rafted debris per gram, and relative abundance of N. pachyderma (s.), and by a delta18O minimum in planktonic foraminifera. The Younger Dryas event is marked by peak abundance of N. pachyderma (s.) and a planktonic delta18O maximum. Benthic foraminiferal delta13C reaches minimum values during both the Heinrich event and the Younger Dryas. Our data indicate pronounced changes in surface water properties were coupled with reduced production of North Atlantic Deep Water at each of these times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foraminiferal assemblage and stable isotopic data are presented for three Quaternary piston cores from Ulleung Basin, East Sea of Korea ((ESK) Japan Sea) near the Korean Peninsula. Major changes in both temperature and salinity strongly affected surface and deep waters of the ESK during the transition from the Last Glacial Maximum (LGM) to the middle Holocene. Local environmental effects dominated during the LGM and the Bølling/Allerød (B/A) when the ESK became semi-isolated from the Pacific Ocean. Regional/global influences dominated following the B/A, after sufficient reconnection with the Pacific. This is reflected in the foraminiferal d18O record which was largely salinity-controlled before the Younger Dryas (YD) and temperature-controlled after the YD. Paleoceanographic changes in the ESK during the last deglaciation reflect sequential reconnection with the Pacific Ocean, through gateways, first (B/A) in the north (Tsugaru Strait) and later (Holocene) in the south (Korea Strait).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siliceous skeletons were investigated in two core profiles (9 cores), one off Cap de Sines, Portugal and the other off Cap de Mazagan, Morocco. Total number of skeletons was determined per gram of dried sediment at different core depths of the fraction >21 µ. Results are compared with a core profile from the Arabian Sea. Diatoms are of four groups: (A) marine-planktonic, B) marine-benthic, (C) freshwater and (D) Tertiary species (Trinacria e.g.). Species from groups (B), (C) and (D) are redeposited in all cores taken at a water depth of greater than 100 m. Small numbers of Silicoflagellates and Radiolarians were found throughout the cores from the Ibero-Moroccan shelf. In the Arabian Sea core, Radiolarians were concentrated in distinct horizons in which Tertiary material was redeposited (40-50, 140-150, 250-260 cm). The number of siliceous skeletons per gram of dried sediment decreases more or less rapidly with increasing depth in all cores. Whereas about 2500 skeletons were found in sediments close to the surface, approximately 100 skeletons only were found in deeper (>40 cm) layers. Deeper horizons with more than 100 specimens were interpreted as redeposited material. This sediment contained robust skeletons, resistant against dissolution, as well as benthic and Tertiary material. The decrease of siliceous skeletons relative to core depth depends upon the sedimentation rate. Where the sedimentation rate is high, the opal dissolution zone extends down to 30-60 cm, where the sedimentation rate is low, it is located at 10-30 cm. Below these depths opals disappears. These zones also have approximately the same age (4000 years) everywhere. Siliceous skeletons dissolve differentially, first the Silicoflagellates disappear, second the Diatoms, third the Radiolarians, and fourth the Sponge Spicules. Surface structure of skeletons from near the opal dissolution zones are similar to those of skeletons treated with NaOH. Tertiary diatoms (Trinacria e. g.) and benthic diatoms (Campylodiscus e.g.) dissolve less rapidly than skeletons of modern planktonic diatoms (Coscinodiscus e.g.). The time control of the opal dissolution zones appeared rather independent of various oceanic influences. No evidence was found for effects from upwelling either off Portugal or off Morocco. No difference in dissolution rates was recorded between the abyssal plains lying off these two areas. Likewise, there was no change in solution rates from Pleistocene to Holocene within either one of the abyssal plains. The Mediterranean outflow, which is enriched in dissolved silica, apparently had no effect on dissolution rates of siliceous skeletons in the sediment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation by Heinrich (1988) that, during the last glacial period, much of the input of ice-rafted detritus to the North Atlantic sediments may have occurred as a succession of catastrophic events, rekindled interest on the history of the northern ice sheets over the last glacial period. In this paper, we present a rapid method to study the distribution of these events (both in space and time) using whole core low-field magnetic susceptibility. We report on approximately 20 cores covering the last 150 to 250 kyr. Well-defined patterns of ice-rafted detritus appear during periods of large continental ice-sheet extent, although these are not always associated within their maxima. Most of the events may be traced across the North Atlantic Ocean. For the six most recent Heinrich layers (HL), two distinct patterns exist: HL1, HL2, HL4, HL5 are distributed along the northern boundary of the Glacial Polar Front, over most of the North Atlantic between ~40° and 50°N; HL3 is more restricted to the central and eastern part of the northern Atlantic. The Nd-Sr isotopic composition of the material constituting different Heinrich events indicates the different provenance of the two patterns: HL3 has a typical Scandinavia-Arctic-Icelandic 'young crust' signature, and the others have a large component of northern Quebec and northern West Greenland 'old crust' material. These isotopic results, obtained on core SU-9008 from the North American basin, are in agreement with the study by Jantschik and Huon (1992), who used K-Ar dating of silt- and clay-size fractions of an eastern basin core (ME-68-89). These data confirm the large spatial scale of these events, and the enormous amount of ice-rafted detritus they represent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stratigraphic, faunal and isotopic analyses of the Maastrichtian at DSDP sites 525A and 21 in the South Atlantic reveal a planktic foraminiferal fauna characterized by two major events, an early late Maastrichtian diversification and end-Maastrichtian mass extinction. Both events are accompanied by major changes in climate and productivity. The diversification event which occurred in two steps between 70.5 and 69.1 Ma increased species richness by a total of 43% and coincided with the onset of major cooling in surface and bottom waters and increased surface productivity. The onset of the terminal decline in Maastrichtian species richness began at 67.5 Ma and the first significant decline in surface productivity occurred at 66.2 Ma, coincident maximum cooling to 13°C in surface waters and the reduction of the surface-to-deep temperature gradient to less than 5°C. Major climatic and moderate productivity changes mark the mass extinction and the last 500 kyr of the Maastrichtian. Between 200 and 400 kyr before the K-T boundary surface and deep waters warmed rapidly by 3-4°C and cooled again during the last 100 kyr of the Maastrichtian. Surface productivity decreased only moderately across the K-T boundary. Species richness began to decline during the late Maastrichtian cooling and by K-T boundary time, the mass extinction had claimed 66% of the species. Viewed within the context of Maastrichtian climate and productivity changes, the K-T mass extinction could have resulted from extreme environmental stress even without the addition of an extraterrestrial impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500-600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean-climate responses on similar and even faster time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Late Quaternary benthic foraminifera of four deep-sea cores off Western Australia (ODP 122-760A, ODP 122-762B, BMR96GC21 and RC9-150) have been examined for evidence of increased surface productivity to explain the anomalously low sea-surface paleotemperatures inferred by planktic foraminifera for the last and penultimate glaciations. The delta13C trends of Cibicidoides wuellerstorfi, and differences between the delta13C trends of planktics (Globigerinoides sacculifer) and benthics (C. wuellerstorfi) in the four cores indicate that during stage 6 bottom waters were significantly depleted in delta13C, and strong delta13C gradients were established in the water column, while during stage 2 and the Last Glacial Maximum, delta13C trends did not differ greatly from that of the Holocene. Two main assemblages of benthic foraminifera were identified by principal component analyses: one dominated by Uvigerina peregrina, another dominated by U. proboscidea. Abundance of these Uvigerinids, and of taxa preferring an infaunal microhabitat, and of Epistominella exigua and Bulimina aculeata indicate that episodes of high influx of particulate organic matter were established in most sites during glacial episodes, and particularly so during stage 6, while evidence for upwelling during the Last Glacial Maximum is less strong. The Penultimate Glaciation upwellings were established within the areas of low sea-surface paleotemperature indicated by planktic foraminifera. During the Last Interglacial Climax, upwelling appears to have been established in an isolated region offshore from a strengthened Leeuwin Current off North West Cape. Last Glacial Maximum delta13C values of C. wuellerstorfi at waterdepths of less than 2000 m show smaller than global mean glacial-interglacial changes suggesting the development of a deep hydrological front. A similar vertical stratification/bathyal front was also established during the Penultimate Glaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report high-resolution planktonic foraminifer census counts and stable oxygen and carbon isotope measurements of the planktonic foraminifera G. bulloides and N. pachyderma s. from sediment core MD07-3076Q for the last deglaciation, the last glacial maximum and Marine Isotope Stage 3. These data provide insights into the marine cycling of carbon and frontal dynamics in the sub-Antarctic Atlantic during the last 68 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reconstruct paleoproductivity at three sites in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088) to investigate the presence and extent of the late Miocene to early Pliocene 'biogenic bloom' from 9 to 3 Ma. Our approach involves construction of multiple records including benthic foraminiferal and CaCO3 accumulation rates, Uvigerina counts, dissolution proxies, and geochemical tracers for biogenic and detrital fluxes. This time interval also contains the so-called late Miocene carbon isotope shift, a well-known decrease in benthic foraminiferal d13C values. We find that the timing of paleoproductivity maxima differs among the three sites. At Site 982 (North Atlantic), benthic foraminifera and CaCO3 accumulation were both at a maximum at ~5 Ma, with smaller peaks at ~6 Ma. The paleoproductivity maximum was centered earlier (~6.6-6.0 Ma) in the tropical Atlantic (Site 925). In the South Atlantic (Site 1088), paleoproductivity increased even earlier, between 8.2 Ma and 6.2 Ma, and remained relatively high until ~5.4 Ma. We note that there is some overlap between the interval of maximum productivity between Sites 925 and 1088, as well as the minor productivity increase at Site 982. We conclude that the paleoproductivity results support hypotheses aiming to place the biogenic bloom into a global context of enhanced productivity. In addition, we find that at all three sites the d13C shift is accompanied by carbonate dissolution. This observation is consistent with published studies that have sought a relationship between the late Miocene carbon isotope shift and carbonate preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment trap samples from OMEX 2 (49°N, 13°W) provide a continuous record of the seasonal succession of planktonic foraminifera in the midlatitude North Atlantic and reveal a complex relationship between periods of production and specific hydrographic conditions. Neogloboquadrina pachyderma dextral coiling (d.), Globigerina bulloides, and Globorotalia inflata are found in great numbers during both the spring and summer seasons, whereas Globigerina quinqueloba, Globorotalia hirsuta, Globorotalia scitula, and Globigerinita glutinata are associated predominantly with the increase in productivity during the spring bloom. Globigerinella aequilateralis, Orbulina universa, and Globigerinoides sacculifer are restricted to late summer conditions following the establishment of a warm, well-stratified surface ocean. An annually integrated fauna from the sediment trap, comprising ~13,000 individuals, is used to evaluate the accuracy of five faunal-based statistical methods of paleotemperature estimation. All of the temperature reconstruction techniques produce estimates of ~16°C and ~11°C for summer and winter surface temperature, respectively, which are in excellent agreement with regional hydrographic data and suggest that the sediment trap assemblage is well represented in the core top faunas. Analysis of the key species that dominate the OMEX 2 sediment trap fauna, G. bulloides, G. inflata, and N. pachyderma d., based on d18O derived temperatures from North Atlantic core top samples, suggests that seasonal variations in planktonic foraminiferal production are nonuniform across the midlatitudes and that this is likely to complicate reconstructing past seasonal hydrographic dynamics using these taxa.