1000 resultados para Counting >63 µm fraction
Absolute abundances of benthic and planktonic foraminifers in samples of ODP Hole 149-901A (Table 1)
Resumo:
Dark gray laminated silty claystones (Unit II) drilled at Site 901 contain Tithonian benthic foraminifer assemblages that indicate a neritic depositional environment and probably dysaerobic bottom-water conditions. Three benthic foraminifer zones are distinguished within Unit II. The upper part of the unit is dominated by Spirillina polygyrata, contains Globospirillina spp. (Samples 149-901A-3R-1, 10-12 cm, to 149-901A-3R-1, 75-77 cm) and is interpreted as late Tithonian. Samples 149-901A-3R-1, 87-89 cm, to 149-901A-6R-1, 74-76 cm, contain Epistomina uhligi and Lingulina franconica and are probably early Tithonian. The early Tithonian Neobulimina atlantica Zone is characterized by the occurrence of the zonal marker and Epistomina uhligi and reaches from Sample 149-901A-6R-1, 128-130 cm, to the base of the drilled-sequence. The sediments and benthic foraminiferal assemblage characteristics of the Tithonian-aged sequence in Hole 901A are unknown elsewhere in the Atlantic and may represent deposition in a marginal shelf basin with increased terrigenous and organic flux.
Resumo:
Radiolarian census and abundance data were collected from three deep-sea cores drilled by the Ocean Drilling Program Sites 884, 887 and 1151 to investigate patterns of ecologic changes in space and time during the last 16 million years for the mid-latitude to subarctic North Pacific. High concentrations of radiolarians occurred between 9.0 and 2.7 Ma. Radiolarian species richness was highest in the early middle Miocene at each site and gradually decreased up to about 7 Ma, coinciding with a well-established global cooling trend. A degree of overlap index calculated for radiolarian assemblages revealed 11 faunal change events, of which 8 corresponded to global cooling events and expansions of polar ice sheets. Three of the faunal change events were observed within the peak of radiolarian accumulation rate and were ascribed to changes in primary productivity in the North Pacific rather than global climatic changes. Our assemblage analyses revealed that north-south differentiation in radiolarian assemblages in the northwestern Pacific has existed since 16 Ma and became more distinct via major steps at 6.8 Ma and 2.7 Ma, coinciding with major glaciation events, and that east-west faunal contrasts in the subarctic region became obvious beginning at 11.7 Ma and changed to a different mode around 6.8 Ma. The observed east-west faunal differences possibly reflect east to west climate differences that were characterized by cooler temperatures in the east than the west during the late Miocene (11.7-6.8 Ma) and then by the opposite temperature trend (6.8 Ma-Recent). A severe glaciation at 2.7 Ma played a large role, particularly in temporal changes in radiolarian accumulation rate and assemblage composition.
Resumo:
A planktonic foraminiferal fauna of probable late Aptian age is recorded in Cores 113-693A-47R and -48R, located on the Antarctic continental margin. Moderate to highly productive surface waters and upper bathyal paleodepths are inferred from benthic and planktonic foraminifers, and other biotic and mineral components in the >63 µm size fraction.
Resumo:
Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.
Resumo:
The Ontong Java Plateau in the western equatorial Pacific contains a deposition record of biserial planktonic foraminifers concentrated in the Paleogene, in which frequencies up to 67% of the planktonic foraminifers are reported, and in the late Neogene, in which a maximum frequency of 48% is reported. Biserial planktonic foraminifers are rare or absent in the latest Oligocene and early Miocene, an interval characterized by warm bottom water and low temperature gradients. These conditions supported a surface assemblage rather than the biserial planktonic foraminifers, whose Neogene species inhabited the oxygen minimum at intermediate depths in the upper water column. Biserial planktonic foraminifers tend to be of high frequency during high sea stands and low frequency during low sea level, presumably in response to the strengthening or weakening of the oxygen minimum. Species extinction and evolution events occur during low sea stands in the Neogene and sometimes correspond to strong reflection horizons of the plateau's seismic stratigraphy. The biserial species are useful biostratigraphic indexes in the plateau section. The last occurrence (LO) of Streptochilus martini corresponds with the Eocene/Oligocene boundary; S. subglobigerum without Neogloboquadrina acostaensis indicates Zone N15; S. latum occurs from the middle of Zone N16 to near the top of Zone N17; S. globigerum ranges from near the top of Zone N17 to the middle of Zone N19/N20; and the S. globulosum continuous range begins just before the first left-to-right coiling change of Pulleniatina, but the species becomes rare in the Pleistocene section.
Resumo:
During Ocean Drilling Program Leg 199, eight sites (Sites 1215-1222) were cored in the Central Pacific. Late Eocene-early Oligocene thick radiolarian-rich biogenic sediments were collected from Holes 1218A, 1219A, and 1220A. This is the first attempt to calibrate the ages of Paleogene radiolarian events using magnetostratigraphy in this region. A total of 107 species and species groups, which are valuable for stratigraphic correlation, are listed with numeric data and figures. Among these three holes, a total of 77 radiolarian events were recognized and their ages were calibrated by correlation with paleomagnetic events recorded in Hole 1220A.