994 resultados para Correlation Functions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The correlation functions of the fluctuations of vibrational frequencies of azide ions and carbon monoxide in proteins are determined directly from stimulated photon echoes generated with femtosecond infrared pulses. The asymmetric stretching vibration of azide bound to carbonic anhydrase II exhibits a pronounced evolution of its vibrational frequency distribution on the time scale of a few picoseconds, which is attributed to modifications of the ligand structure through interactions with the nearby Thr-199. When azide is bound in hemoglobin, a more complex evolution of the protein structure is required to interchange the different ligand configurations, as evidenced by the much slower relaxation of the frequency distribution in this case. The time evolution of the distribution of frequencies of carbon monoxide bound in hemoglobin occurs on the ≈10-ps time scale and is very nonexponential. The correlation functions of the frequency fluctuations determine the evolution of the protein structure local to the probe and the extent to which the probe can navigate those parts of the energy landscape where the structural configurations are able to modify the local potential energy function of the probe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The out of equilibrium evolution for an Edwards‐Anderson spin glass is followed for a tenth of a second, a long enough time to let us make safe predictions about the behaviour at experimental scales. This work has been made possible by Janus, an FPGA based special purpose computer. We have thoroughly studied the spin glass correlation functions and the growth of the coherence length for L = 80 lattices in 3D. Our main conclusion is that these spin glasses follow noncoarsening dynamics, at least up to the experimentally relevant time scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las funciones de segundo orden son cada vez más empleadas en el análisis de procesos ecológicos. En este trabajo presentamos dos funciones de 2º orden desarrolladas recientemente que permiten analizar la interacción espacio-temporal entre dos especies o tipos funcionales de individuos. Estas funciones han sido desarrolladas para el estudio de interacciones entre especies en masas forestales a partir de la actual distribución diamétrica de los árboles. La primera de ellas es la función bivariante para procesos de puntos con marca Krsmm, que permite analizar la correlación espacial de una variable entre los individuos pertenecientes a dos especies en función de la distancia. La segunda es la función de reemplazo , que permite analizar la asociación entre los individuos pertenecientes a dos especies en función de la diferencia entre sus diámetros u otra variable asociada a dichos individuos. Para mostrar el comportamiento de ambas funciones en el análisis de sistemas forestales en los que operan diferentes procesos ecológicos se presentan tres casos de estudio: una masa mixta de Pinus pinea L. y Pinus pinaster Ait. en la Meseta Norte, un bosque de niebla de la Región Tropical Andina y el ecotono entre las masas de Quercus pyrenaica Willd. y Pinus sylvestris L. en el Sistema Central, en los que tanto la función Krsmm como la función r se utilizan para analizar la dinámica forestal a partir de parcelas experimentales con todos los árboles localizados y de parcelas de inventario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi-Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature correlation functions for the Fermi Hubbard model, with no evidence of the Fermi sign problem. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal-insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generating functional method is employed to investigate the synchronous dynamics of Boolean networks, providing an exact result for the system dynamics via a set of macroscopic order parameters. The topology of the networks studied and its constituent Boolean functions represent the system's quenched disorder and are sampled from a given distribution. The framework accommodates a variety of topologies and Boolean function distributions and can be used to study both the noisy and noiseless regimes; it enables one to calculate correlation functions at different times that are inaccessible via commonly used approximations. It is also used to determine conditions for the annealed approximation to be valid, explore phases of the system under different levels of noise and obtain results for models with strong memory effects, where existing approximations break down. Links between Boolean networks and general Boolean formulas are identified and results common to both system types are highlighted. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the Sm3+ ions in the structure of vitreous Sm2O3•4P2O5 has been investigated using the neutron diffraction anomalous dispersion technique, which employs the wavelength dependence of the real and imaginary parts of the neutron scattering length close to an absorption resonance. The data described here represent the first successful complete neutron anomalous dispersion study on an amorphous material. This experimental methodology permits one to determine exclusively the closest Sm• •• Sm separation. Knowledge of the R•••R (R = rare-earth) pairwise correlation is key to understanding the optical and magnetic properties of rare-earth phosphate glasses. The anomalous difference correlation function, ΔT''(r), shows a dominant feature pertaining to a Sm•••Sm separation, centred at 4.8 Å. The substantial width and marked asymmetry of this peak indicates that the minimum approach of Sm3+ ions could be as close as 4 Å. Information on other pairwise correlations is also revealed via analysis of T (r) and ΔT (r) correlation functions: Sm3+ ions display an average co-ordination number, n Sm(O), of 7, with a mean Sm–O bond length of 2.375(5) Å whilst the PO4 tetrahedra have a mean P–O bond length of 1.538(2) Å. Second- and third-neighbour correlations are also identified. These results corroborate previous findings. Such consistency lends support to the application of the anomalous dispersion technique to determine separations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isotropic scattering Raman spectra of liquid acetonitrile (AN) solutions of LiBF4 and NaI at various temperatures and concentrations have been investigated. For the first time imaginary as well as real parts of the solvent vibrational correlation functions have been extracted from the spectra. Such imaginary parts are currently an important component of modern theories of vibrational relaxation in liquids. This investigation thus provides the first experimental data on imaginary parts of a correlation function in AN solutions. Using the fitting algorithm we recently developed, statistically confident models for the Raman spectra were deduced. The parameters of the band shapes, with an additional correction, of the ν2 AN vibration (CN stretching), together with their confidence intervals are also reported for the first time. It is shown that three distinct species, with lifetimes greater than ∼10−13 s, of the AN molecules can be detected in solutions containing Li+ and Na+. These species are attributed to AN molecules directly solvating cations; the single oriented and polarised molecules interleaving the cation and anion of a Solvent Shared Ion Pair (SShIP); and molecules solvating anions. These last are considered to be equivalent to the next layer of solvent molecules, because the CN end of the molecule is distant from the anion and thus less affected by the ionic charge compared with the anion situation. Calculations showed that at the concentrations employed, 1 and 0.3 M, there were essentially no other solvent molecules remaining that could be considered as bulk solvent. Calculations also showed that the internuclear distance in these solutions supported the proposal that the ionic entity dominating in solution was the SShIP, and other evidence was adduced that confirmed the absence of Contact Ion Pairs at these concentrations. The parameters of the shape of the vibrational correlation functions of all three species are reported. The parameters of intramolecular anharmonic coupling between the potential surfaces in AN and the dynamics of the intermolecular environment fluctuations and intermolecular energy transfer are presented. These results will assist investigations made at higher and lower concentrations, when additional species and interactions with AN molecules will be present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide a theoretical explanation of the results on the intensity distributions and correlation functions obtained from a random-beam speckle field in nonlinear bulk waveguides reported in the recent publication by Bromberg et al. [Nat. Photonics 4, 721 (2010) ].. We study both the focusing and defocusing cases and in the limit of small speckle size (short-correlated disordered beam) provide analytical asymptotes for the intensity probability distributions at the output facet. Additionally we provide a simple relation between the speckle sizes at the input and output of a focusing nonlinear waveguide. The results are of practical significance for nonlinear Hanbury Brown and Twiss interferometry in both optical waveguides and Bose-Einstein condensates. © 2012 American Physical Society.