992 resultados para Cork.
Resumo:
The origin, development, and utilization of the skimmer net is reviewed along with other historical shrimp gears used in coastal Louisiana. The skimmer was developed to catch white shrimp, Penaeus setiferus, observed jumping over the cork line (headrope) of trawls being worked in shallow waters. A description of the gear is presented including basic components and various frame designs used by fishermen during its development. The advantages of skimmers over bottom trawls include: multiple use as both trawl and butterfly net (wing net), ease of deployment, increased maneuverability, reduction and greater survivability of bycatch, and ability to cover more area due to increased speed and continuous fishing capability. Disadvantages may include compromising vessel stability when stored upright on the deck, possible damage to water bottoms when improperly rigged, and limitation to a 12-foot (3.6 m) maximum depth due to size restrictions. The growing popularity of the skimmer net is evident by its introduction into North Carolina and inquiries from other southeastern Atlantic and Gulf coast states.
Resumo:
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Contemporary Irish data on the prevalence of major cardiovascular disease (CVD) risk factors are sparse. The primary aims of this study were (1) to estimate the prevalence of major cardiovascular disease risk factors, including Type 2 Diabetes Mellitus, in the general population of men and women between the ages of 50 and 69 years; and (2) to estimate the proportion of individuals in this age group at high absolute risk of cardiovascular disease events on the basis of pre-existing cardiovascular disease or as defined by the Framingham equation. Participants were drawn from the practice lists of 17 general practices in Cork and Kerry using stratified random sampling. A total of 1018 people attended for screening (490 men, 48%) from 1473 who were invited, a response rate of 69.1%. Cardiovascular disease risk factors and glucose intolerance are common in the population of men and women aged between 50 and 69 years. Almost half the participants were overweight and a further quarter met current international criteria for obesity, one of the highest recorded prevalence rates for obesity in a European population sample. Forty per cent of the population reported minimal levels of physical activity and 19% were current cigarette smokers. Approximately half the sample had blood pressure readings consistent with international criteria for the diagnosis of hypertension, but only 38% of these individuals were known to be hypertensive. Eighty per cent of the population sample had a cholesterol concentration in excess of 5 mmol/l. Almost 4% of the population had Type 2 Diabetes Mellitus, of whom 30% were previously undiagnosed. A total of 137 participants (13.5%) had a history or ECG findings consistent with established cardiovascular disease. Of the remaining 881 individuals in the primary prevention population, a total of 20 high-risk individuals (19 male) had a risk of a coronary heart disease event 30% over ten years according to the Framingham risk equation, giving an overall population prevalence of 2.0% (95% CI 1.3 - 3.0). At a risk level 20% over ten years, an additional 91 individuals (8.9%) were identified. Thus a total of 24.4% of the population were at risk either through pre-existing CVD (13.5%) or an estimated 10-year risk exceeding 20% according to the Framingham risk equation (10.9%). Thus a substantial proportion of middle-aged men are at high risk of CVD. The findings emphasise the scale of the CVD epidemic in Ireland and the need for ongoing monitoring of risk factors at the population level and the need to develop preventive strategies at both the clinical and societal level.
Resumo:
Purpose – To consider the economic and physical impact of electronic journals on remotely stored print stock. Design/methodology/approach – A collection of print journals was used as an object for consideration. Physical and heritage aspects of the collection are examined and questions are posed regarding the wisdom of future retention in response to increased demand for electronic alternatives. Findings – Emerging trends predict a predominance of periodical literature in electronic form. The future of local remote storage for low demand printed journal collections needs to be evaluated in economic as well as cultural terms. Research limitations/implications – Based on a collection at the Boole Library, University College Cork, Ireland. Practical implications – Similar consideration should be given to collections in other regional libraries. Originality/value – Contributes to discussions on the long-term value of retaining print journal holdings.
Resumo:
A souterrain was discovered here when the weight of a tractor passing overhead caused a collapse of the roof of Chamber I. It was surveyed in March 1976. The landowner, Mr. Thomas Curran of Ballylangdon has consented to keep the site open for future inspection. The site is not directly connected with any visible surface structure. A small uni-vallate ringfort is however situated c.I60m S.S.E. of the site. The bedrock is a slaty sandstone.
Resumo:
At a Council meeting of the newly-formed Cork Historical and Archaeological Society, 17 November 1891, the Chairman /President, Revd R.A. Canon Sheehan, 'informed the meeting that Mr. Robert Day had been generous enough to place his valuable edition of Smith's History, with notes by Dr. Caulfield and Crofton Croker, at the disposal of the Society for publication'. At a subsequent meeting Wm Ringrose Atkins expressed the Society's thanks to W.A. Copinger 'who has kindly consented to edit Smith's Cork with Mr. Robert Day'. Thus began the work of rounding out close to two and a half centuries of antiquarian endeavour in Cork and of using its synthesis as a foundation for a new medium to record and communicate the social and cultural heritage of Cork city and county.
Resumo:
The history of higher learning in Cork can be traced from its late eighteenth-century origins to its present standing within the extended confines of the Neo-Gothic architecture of University College, Cork. This institution, founded in 1845 was the successor and ultimate achievement of its forerunner, the Royal Cork Institution. The opening in 1849 of the college, then known as Queen's College, Cork, brought about a change in the role of the Royal Cork Institution as a centre of education. Its ambition of being the 'Munster College' was subsumed by the Queen's College even though it continued to function as a centre of learning up to the 1805. At this time its co-habitant, the School of Design, received a new wing under the benevolent patronage of William Crawford, and the Royal Cork Institution ceased to exist as the centre for cultural, technical and scientific learning it had set out to be. The building it occupied is today known as the Crawford Municipal Art Gallery.
Resumo:
Global biodiversity is eroding at an alarming rate, through a combination of anthropogenic disturbance and environmental change. Ecological communities are bewildering in their complexity. Experimental ecologists strive to understand the mechanisms that drive the stability and structure of these complex communities in a bid to inform nature conservation and management. Two fields of research have had high profile success at developing theories related to these stabilising structures and testing them through controlled experimentation. Biodiversity-ecosystem functioning (BEF) research has explored the likely consequences of biodiversity loss on the functioning of natural systems and the provision of important ecosystem services. Empirical tests of BEF theory often consist of simplified laboratory and field experiments, carried out on subsets of ecological communities. Such experiments often overlook key information relating to patterns of interactions, important relationships, and fundamental ecosystem properties. The study of multi-species predator-prey interactions has also contributed much to our understanding of how complex systems are structured, particularly through the importance of indirect effects and predator suppression of prey populations. A growing number of studies describe these complex interactions in detailed food webs, which encompass all the interactions in a community. This has led to recent calls for an integration of BEF research with the comprehensive study of food web properties and patterns, to help elucidate the mechanisms that allow complex communities to persist in nature. This thesis adopts such an approach, through experimentation at Lough Hyne marine reserve, in southwest Ireland. Complex communities were allowed to develop naturally in exclusion cages, with only the diversity of top trophic levels controlled. Species removals were carried out and the resulting changes to predator-prey interactions, ecosystem functioning, food web properties, and stability were studied in detail. The findings of these experiments contribute greatly to our understanding of the stability and structure of complex natural communities.
Resumo:
Existing Building/Energy Management Systems (BMS/EMS) fail to convey holistic performance to the building manager. A 20% reduction in energy consumption can be achieved by efficiently operated buildings compared with current practice. However, in the majority of buildings, occupant comfort and energy consumption analysis is primarily restricted by available sensor and meter data. Installation of a continuous monitoring process can significantly improve the building systems’ performance. We present WSN-BMDS, an IP-based wireless sensor network building monitoring and diagnostic system. The main focus of WSN-BMDS is to obtain much higher degree of information about the building operation then current BMSs are able to provide. Our system integrates a heterogeneous set of wireless sensor nodes with IEEE 802.11 backbone routers and the Global Sensor Network (GSN) web server. Sensing data is stored in a database at the back office via UDP protocol and can be access over the Internet using GSN. Through this demonstration, we show that WSN-BMDS provides accurate measurements of air-temperature, air-humidity, light, and energy consumption for particular rooms in our target building. Our interactive graphical user interface provides a user-friendly environment showing live network topology, monitor network statistics, and run-time management actions on the network. We also demonstrate actuation by changing the artificial light level in one of the rooms.
Resumo:
In this paper, The radio Frequency (RF) Monitoring and Measurement of the Environmental Research Institute (ERI) located in Cork city will be monitored and analyzed in both the Zigbee (2.44 GHz) and the industrial, scientific and medical (ISM 433 MHz). The main objective of this survey is to confirm what the noise and interferences threat signals exist in these bands. It was agreed that the surveys would be carried out in 5 different rooms and areas that are candidates for the Wireless Sensors deployments. Based on the carried on study, A Zigbee standard Wireless Sensor Network (WSN) will be developed employing a number of motes for sensing number of signals like temperature, light and humidity beside the RSSI and battery voltage monitoring. Such system will be used later on to control and improve indoor building climate at reduced costs, remove the need for cabling and both installation and operational costs are significantly reduced.
Resumo:
Accepted Version
Resumo:
At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.
Resumo:
The work described in this thesis reports the structural changes induced on micelles under a variety of conditions. The micelles of a liquid crystal film and dilute solutions of micelles were subjected to high pressure CO2 and selected hydrocarbon environments. Using small angle neutron scattering (SANS) techniques the spacing between liquid crystal micelles was measured in-situ. The liquid crystals studied were templated from different surfactants with varying structural characteristics. Micelles of a dilute surfactant solution were also subjected to elevated pressures of varying gas atmospheres. Detailed modelling of the in-situ SANS experiments revealed information of the size and shape of the micelles at a number of different pressures. Also reported in this thesis is the characterisation of mesoporous materials in the confined channels of larger porous materials. Periodic mesoporous organosilicas (PMOs) were synthesised within the channels of anodic alumina membranes (AAM) under different conditions, including drying rates and precursor concentrations. In-situ small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) was used to determine the pore morphology of the PMO within the AAM channels. PMO materials were also used as templates in the deposition of gold nanoparticles and subsequently used in the synthesis of germanium nanostructures. Polymer thin films were also employed as templates for the directed deposition of gold nanoparticles which were again used as seeds for the production of germanium nanostructures. A supercritical CO2 (sc-CO2) technique was successfully used during the production of the germanium nanostructures.
Resumo:
This thesis describes a broad range of experiments based on an aerosol flow-tube system to probe the interactions between atmospherically relevant aerosols with trace gases. This apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements respectively as a function of relative humidity and aerosol chemical composition. Heterogeneous reactions between various ratios of ammonia gas and acidic aerosols were studied in aerosol form as opposed to bulk solutions. The apparatus is unique, in that it employed two aerosol generation methods to follow the size evolution of the aerosol while allowing detailed spectroscopic investigation of its chemical content. A novel chemiluminescence apparatus was also used to measure [NH4+]. SO2.H2O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid. This complex was produced within gaseous, aqueous and aerosol SO2 systems. The addition of ammonia, gave mainly hydrogen sulfite tautomers and disulfite ions. These species were prevalent at high humidities enhancing the aqueous nature of sulfur (IV) species. Their weak acidity is evident due to the low [NH4+] produced. An increasing recognition that dicarboxylic acids may contribute significantly to the total acid burden in polluted urban environments is evident in the literature. It was observed that speciation within the oxalic, malonic and succinic systems shifted towards the most ionised form as the relative humidity was increased due to complete protonisation. The addition of ammonia produced ammonium dicarboxylate ions. Less reaction for ammonia with the malonic and succinic species were observed in comparison to the oxalic acid system. This observation coincides with the decrease in acidity of these organic species. The interaction between dicarboxylic acids and ‘sulfurous’/sulfuric acid has not been previously investigated. Therefore the results presented here are original to the field of tropospheric chemistry. SHO3-; S2O52-; HSO4-; SO42- and H1,3,5C2,3,4O4-;C2,3,4O4 2- were the main components found in the complex inorganic-organic systems investigated here. The introduction of ammonia produced ammonium dicarboxylate as well as ammonium disulfite/sulfate ions and increasing the acid concentrations increased the total amount of [NH4+].
Resumo:
Wind energy is the energy source that contributes most to the renewable energy mix of European countries. While there are good wind resources throughout Europe, the intermittency of the wind represents a major problem for the deployment of wind energy into the electricity networks. To ensure grid security a Transmission System Operator needs today for each kilowatt of wind energy either an equal amount of spinning reserve or a forecasting system that can predict the amount of energy that will be produced from wind over a period of 1 to 48 hours. In the range from 5m/s to 15m/s a wind turbine’s production increases with a power of three. For this reason, a Transmission System Operator requires an accuracy for wind speed forecasts of 1m/s in this wind speed range. Forecasting wind energy with a numerical weather prediction model in this context builds the background of this work. The author’s goal was to present a pragmatic solution to this specific problem in the ”real world”. This work therefore has to be seen in a technical context and hence does not provide nor intends to provide a general overview of the benefits and drawbacks of wind energy as a renewable energy source. In the first part of this work the accuracy requirements of the energy sector for wind speed predictions from numerical weather prediction models are described and analysed. A unique set of numerical experiments has been carried out in collaboration with the Danish Meteorological Institute to investigate the forecast quality of an operational numerical weather prediction model for this purpose. The results of this investigation revealed that the accuracy requirements for wind speed and wind power forecasts from today’s numerical weather prediction models can only be met at certain times. This means that the uncertainty of the forecast quality becomes a parameter that is as important as the wind speed and wind power itself. To quantify the uncertainty of a forecast valid for tomorrow requires an ensemble of forecasts. In the second part of this work such an ensemble of forecasts was designed and verified for its ability to quantify the forecast error. This was accomplished by correlating the measured error and the forecasted uncertainty on area integrated wind speed and wind power in Denmark and Ireland. A correlation of 93% was achieved in these areas. This method cannot solve the accuracy requirements of the energy sector. By knowing the uncertainty of the forecasts, the focus can however be put on the accuracy requirements at times when it is possible to accurately predict the weather. Thus, this result presents a major step forward in making wind energy a compatible energy source in the future.