863 resultados para Control design
Resumo:
Background: Flu vaccine composition is reformulated on a yearly basis. As such, the vaccine effectiveness (VE) from previous seasons cannot be considered for subsequent years, and it is necessary to monitor the VE for each season. This study (MonitorEVA- monitoring vaccine effectiveness) intends to evaluate the feasibility of using the national influenza surveillance system (NISS) for monitoring the influenza VE. Material and methods: Data was collected within NISS during 2004 to 2014 seasons. We used a case-control design where laboratory confirmed incident influenza like illness (ILI) patients (cases) were compared to controls (ILI influenza negative). Eligible individuals consisted on all aged individuals that consult a general practitioner or emergency room with ILI symptoms with a swab collected within seven days of symptoms onset. VE was estimated as 1- odds ratio of being vaccinated in cases versus controls adjusted for age and month of onset by logistic regression. Sensitivity analyses were conducted to test possible effect of assumptions on vaccination status, ILI definition and timing of swabs (<3 days after onset). Results: During the 2004-2014 period, a total of 5302 ILI patients were collected but 798 ILI were excluded for not complying with inclusion criteria. After data restriction the sample size in both groups was higher than 148 individuals/ season; minimum sample size needed to detect a VE of at least 50% considering a level of significance of 5% and 80% power. Crude VE point estimates were under 45% in 2004/05, 2005/06, 2011/12 and 2013/14 season; between 50%-70% in 2006/07, 2008/09 and 2010/11 seasons, and above 70% in 2007/08 and 2012/13 season. From season 2006/07 to 2013/14, all crude VE estimates were statistically significant. After adjustment for age group and month of onset, the VE point estimates decreased and only 2008/09, 2012/13 and 2013/14 seasons were significant. Discussion and Conclusions: MonitorEVA was able to provide VE estimates for all seasons, including the pandemic, indicating if the VE was higher than 70% and less than 50%. When comparing with other observational studies, MonitorEVA estimates were comparable but less precise and VE estimates were in accordance with the antigenic match of the circulating virus/ vaccine strains. Given the sensitivity results, we propose a MonitorEVA based on: a) Vaccination status defined independently of number of days between vaccination and symptoms onset; b) use of all ILI data independent of the definition; c) stratification of VE according to time between onset and swab (< 3 and ≥3 days).
Resumo:
Deficiencies in DNA repair have been hypothesized to increase cancer risk and excess cancer incidence is a feature of inherited diseases caused by defects in DNA damage recognition and repair. We investigated, using a case-control design, whether the double-strand break repair gene polymorphisms RAD51 5' untranslated region -135 G > C, XRCC2 R188H G > A, and XRCC3 T241M C > T were associated with risk of breast or ovarian cancer in Australian women. Sample sets included 1,456 breast cancer cases and 793 age-matched controls ages under 60 years of age, 549 incident ovarian cancer cases, and 335 controls of similar age distribution. For the total sample and the subsample of Caucasian women, there were no significant differences in genotype distribution between breast cancer cases and controls or between ovarian cancer cases and combined control groups. The crude odds ratios (OR) and 95% confidence intervals (95% CI) associated with the RAD51 GC/CC genotype frequency was OR, 1.10; 95% CI, 0.80-1.41 for breast cancer and OR, 1.22; 95% CI, 0.92-1.62 for ovarian cancer. Similarly, there were no increased risks associated with the XRCC2 GA/AA genotype (OR, 0.98; 95% CI, 0.76-1.26 for breast cancer and OR, 0.93; 95% CI, 0.69-1.25 for ovarian cancer) or the XRCC3 CT/TT genotype (OR, 0.92; 95% Cl, 0.77-1.10 for breast cancer and OR, 0.87; 95% CI, 0.71-1.08 for ovarian cancer). Results were little changed after adjustment for age and other measured risk factors. Although there was little statistical power to detect modest increases in risk for the homozygote variant genotypes, particularly for the rare RAD51 and XRCC2 variants, the data suggest that none of these variants play a major role in the etiology of breast or ovarian cancer.
Resumo:
Background There are no analytical studies of individual risks for Ross River virus (RRV) disease. Therefore, we set out to determine individual risk and protective factors for RRV disease in a high incidence area and to assess the utility of the case-control design applied for this purpose to an arbovirus disease. Methods We used a prospective matched case-control study of new community cases of RRV disease in the local government areas of Cairns, Mareeba, Douglas, and Atherton, in tropical Queensland, from January I to May 31, 1998. Results Protective measures against mosquitoes reduced the risk for disease. Mosquito coils, repellents, and citronella candles each decreased risk by at least 2-fold, with a dose-response for the number of protective measures used. Light-coloured clothing decreased risk 3-fold. Camping increased the risk 8-fold. Conclusions These risks were substantial and statistically significant, and provide a basis for educational programs on individual protection against RRV disease in Australia. Our study demonstrates the utility of the case-control method for investigating arbovirus risks. Such a risk analysis has not been done before for RRV infection, and is infrequently reported for other arbovirus infections.
Resumo:
Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the expected value of a suitably chosen loss function. Moreover, most control methods usually assume the certainty equivalence principle to simplify the problem and make it computationally tractable. We offer an improved probabilistic framework which is not constrained by these previous assumptions, and provides a more natural framework for incorporating and dealing with uncertainty. The focus of this paper is on developing this framework to obtain an optimal control law strategy using a fully probabilistic approach for information extraction from process data, which does not require detailed knowledge of system dynamics. Moreover, the proposed control method framework allows handling the problem of input-dependent noise. A basic paradigm is proposed and the resulting algorithm is discussed. The proposed probabilistic control method is for the general nonlinear class of discrete-time systems. It is demonstrated theoretically on the affine class. A nonlinear simulation example is also provided to validate theoretical development.
Resumo:
A major challenge of modern teams lies in the coordination of the efforts not just of individuals within a team, but also of teams whose efforts are ultimately entwined with those of other teams. Despite this fact, much of the research on work teams fails to consider the external dependencies that exist in organizational teams and instead focuses on internal or within team processes. Multi-Team Systems Theory is used as a theoretical framework for understanding teams-of-teams organizational forms (Multi-Team Systems; MTS's); and leadership teams are proposed as one remedy that enable MTS members to dedicate needed resources to intra-team activities while ensuring effective synchronization of between-team activities. Two functions of leader teams were identified: strategy development and coordination facilitation; and a model was developed delineating the effects of the two leader roles on multi-team cognitions, processes, and performance.^ Three hundred eighty-four undergraduate psychology and business students participated in a laboratory simulation that modeled an MTS; each MTS was comprised of three, two-member teams each performing distinct but interdependent components of an F-22 battle simulation task. Two roles of leader teams supported in the literature were manipulated through training in a 2 (strategy training vs. control) x 2 (coordination training vs. control) design. Multivariate analysis of variance (MANOVA) and mediated regression analysis were used to test the study's hypotheses. ^ Results indicate that both training manipulations produced differences in the effectiveness of the intended form of leader behavior. The enhanced leader strategy training resulted in more accurate (but not more similar) MTS mental models, better inter-team coordination, and higher levels of multi-team (but not component team) performance. Moreover, mental model accuracy fully mediated the relationship between leader strategy and inter-team coordination; and inter-team coordination fully mediated the effect of leader strategy on multi-team performance. Leader coordination training led to better inter-team coordination, but not to higher levels of either team or multi-team performance. Mediated Input-Process-Output (I-P-O) relationships were not supported with leader coordination; rather, leader coordination facilitation and inter-team coordination uniquely contributed to component team and multi-team level performance. The implications of these findings and future research directions are also discussed. ^
Resumo:
Positive student development is a complex and multidimensional process, and is therefore best understood through interdisciplinary approaches. Recently, researchers studying the optimization of student development have responded to the challenge by using and integrating concepts from both educational and human developmental theories (King & Magdola, 1999). This theoretical confluence holds significant promise for ethnic minority college students due to the particular challenges these students often encounter. This research assesses individuals involved in an undergraduate educational and professional development mentoring intervention designed to optimize student development for ethnic minority students. First, in order to explore how development is fostered for minority college students, three objectives were pursued. The first objective was to assess the goals that students set for themselves and the degree of personal expressiveness they have in relation to their chosen goals. The second objective was to identify the types of challenges and obstacles that minority students perceive during their college years. The third objective was to identify the need for and availability of resources and support in overcoming obstacles to college success. Specifically, it was assessed whether (and in what ways) students involved in the intervention perceive significantly fewer obstacles and limitations to their development and greater availability of support and resources as a result of their involvement with the mentoring intervention. Second, the relationship between intervention involvement and students' perceptions of institutional and mentor nurturance and support was assessed. ^ A survey was conducted with 77 undergraduate students at Florida International University. A comparison-control design was used to compare students who were involved in the intervention (n = 38) and students who were not involved (n = 39) on variables related to their goals, perceived obstacles and supports, and college experiences. Results indicate that students in the intervention and students in the control group differed in goal orientation and perceived obstacles and supports. The two groups did not differ in their perceptions of institutional nurturance and support. Implications for the development and refinement of interventions aimed at fostering professional development for minority students are discussed. ^
Resumo:
Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^
Resumo:
Context: Core strength training (CST) has been popular in the fitness industry for a decade. Although strong core muscles are believed to enhance athletic performance, only few scientific studies have been conducted to identify the effectiveness of CST on improving athletic performance. Objective: Identify the effects of a 6-wk CST on running kinetics, lower extremity stability, and running performance in recreational and competitive runners. Design and Setting: A test-retest, randomized control design was used to assess the effect of CST and no CST on ground reaction force (GRF), lower extremity stability scores, and running performance. Participants: Twenty-eight healthy adults (age, 36.9+9.4yrs, height, 168.4+9.6cm, mass, 70.1+15.3kg) were recruited and randomly divided into two groups. Main outcome Measures: GRF was determined by calculating peak impact vertical GRF (vGRF), peak active vGRF, duration of the breaking or horizontal GRF (hGRF), and duration of the propulsive hGRF as measured while running across a force plate. Lower extremity stability in three directions (anterior, posterior, lateral) was assessed using the Star Excursion Balance Test (SEBT). Running performance was determined by 5000 meter run measured on selected outdoor tracks. Six 2 (time) X 2 (condition) mixed-design ANOVA were used to determine if CST influences on each dependent variable, p < .05. Results: No significant interactions were found for any kinetic variables and SEBT score, p>.05. But 5000m run time showed significant interaction, p < .05. SEBT scores improved in both groups, but more in the experimental group. Conclusion: CST did not significantly influence kinetic efficiency and lower extremity stability, but did influence running performance.
Resumo:
International audience
Resumo:
Nearly a third of UK gas and electricity is used in homes, of which 80% is for space heating and hot water provision. Rising consumer bills, concerns about climate change and the surge in personal digital technology use has provoked the development of intelligent domestic heating controls. Whilst the need for having suitable control of the home heating system is essential for reducing domestic energy use, these heating controls rely on appropriate user interaction to achieve a saving and it is unclear whether these ‘smart’ heating controls enhance the use of domestic heating or reduce energy demand. This paper describes qualitative research undertaken with a small sample of UK householders to understand how people use new heating controls installed in their homes and what the requirements are for improved smart heating control design. The paper identifies, against Nielsen’s usability heuristics, the divergence between the householder’s use, understanding and expectations of the heating system and the actual design of the system. Digital and smart heating control systems should be designed to maximise usability so that they can be effectively used for efficient heating control by all users. The research highlights the need for development of new systems to readdress the needs of users and redefine the system requirements.
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN) < 500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10−5 to 1 × 10−10 and 1 × 10−3 to 1 × 10−8 mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10−8 mol/L) SMX for a sub-Nernstian slope of −40.3 mV/decade from 5.0 × 10−8 to 2.4 × 10−5 mol/L.
Resumo:
"Series Title: IFIP - The International Federation for Information Processing, ISSN 1868-4238"