835 resultados para Contrast-to-noise ratio
Resumo:
We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model (beta-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z is an element of [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high-and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high-and low-substructure level clusters) are different (they present an offset, i. e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.
Resumo:
Paulo CA, Roschel H, Ugrinowitsch C, Kobal R and Tricoli V. Influence of different resistance exercise loading schemes on mechanical power output in work to rest ratio-equated and -nonequated conditions. J Strength Cond Res 26(5): 1308-1312, 2012-It is well known that most sports are characterized by the performance of intermittent high-intensity actions, requiring high muscle power production within different intervals. In fact, the manipulation of the exercise to rest ratio in muscle power training programs may constitute an interesting strategy when considering the specific performance demand of a given sport modality. Thus, the aim of this study was to evaluate the influence of different schemes of rest intervals and number of repetitions per set on muscle power production in the squat exercise between exercise to rest ratio-equated and -nonequated conditions. Nineteen young males (age: 25.7 +/- 4.4 years; weight: 81.3 +/- 13.7 kg; height: 178.1 +/- 5.5 cm) were randomly submitted to 3 different resistance exercise loading schemes, as follows: short-set short-interval condition (SSSI; 12 sets of 3 repetitions with a 27.3-second interval between sets); short-set long-interval condition (SSLI; 12 sets of 3 repetitions with a 60-second interval between sets); long-set long-interval (LSLI; 6 sets of 6 repetitions with a 60-second rest interval between sets). The main finding of the present study is that the lower exercise to rest ratio protocol (SSLI) resulted in greater average power production (601.88 +/- 142.48 W) when compared with both SSSI and LSLI (581.86 +/- 113.18 W; 578 +/- 138.78 W, respectively). Additionally, both the exercise to rest ratio-equated conditions presented similar performance and metabolic results. In summary, these findings suggest that shorter rest intervals may fully restore the individual's ability to produce muscle power if a smaller exercise volume per set is performed and that lower exercise to rest ratio protocols result in greater average power production when compared with higher ratio ones.
Resumo:
Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results.
Resumo:
Background: Childhood obesity is a public health problem worldwide. Visceral obesity, particularly associated with cardio-metabolic risk, has been assessed by body mass index (BMI) and waist circumference, but both methods use sex-and age-specific percentile tables and are influenced by sexual maturity. Waist-to-height ratio (WHtR) is easier to obtain, does not involve tables and can be used to diagnose visceral obesity, even in normal-weight individuals. This study aims to compare the WHtR to the 2007 World Health Organization (WHO) reference for BMI in screening for the presence of cardio-metabolic and inflammatory risk factors in 6–10-year-old children. Methods: A cross-sectional study was undertaken with 175 subjects selected from the Reference Center for the Treatment of Children and Adolescents in Campos, Rio de Janeiro, Brazil. The subjects were classified according to the 2007 WHO standard as normal-weight (BMI z score > −1 and < 1) or overweight/obese (BMI z score ≥ 1). Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glycemia, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), Homeostatic Model Assessment – Insulin Resistance (HOMA-IR), leukocyte count and ultrasensitive C-reactive protein (CRP) were also analyzed. Results: There were significant correlations between WHtR and BMI z score (r = 0.88, p < 0.0001), SBP (r = 0.51, p < 0.0001), DBP (r = 0.49, p < 0.0001), LDL (r = 0.25, p < 0.0008, HDL (r = −0.28, p < 0.0002), TG (r = 0.26, p < 0.0006), HOMA-IR (r = 0.83, p < 0.0001) and CRP (r = 0.51, p < 0.0001). WHtR and BMI areas under the curve were similar for all the cardio-metabolic parameters. A WHtR cut-off value of > 0.47 was sensitive for screening insulin resistance and any one of the cardio-metabolic parameters. Conclusions: The WHtR was as sensitive as the 2007 WHO BMI in screening for metabolic risk factors in 6-10-year-old children. The public health message “keep your waist to less than half your height” can be effective in reducing cardio-metabolic risk because most of these risk factors are already present at a cut point of WHtR ≥ 0.5. However, as this is the first study to correlate the WHtR with inflammatory markers, we recommend further exploration of the use of WHtR in this age group and other population-based samples.
Resumo:
This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Bau und Entwicklung eines Applikators zur Verabreichung hyperpolarisierter Gase in der MRT der Lunge
Resumo:
Im Rahmen meiner Dissertation habe ich gemäß dem Medizinproduktegesetz ein MR-kompatibles Verabreichungsgerät entwickelt, um Patienten hyperpolarisierte Gas Boli (He-3, Xe-129) als Kontrasgas zur MRT der Lunge zu applizieren. Das Gerät wurde dazu optimiert, die Gase oder Gasmischungen (z. B. HP Gas + N2) in definierten Mengen und zu definierten Zeitpunkten während der Inspiration mit hoher Reproduzierbarkeit und Zuverlässigkeit zu verabreichen, ohne dabei die MR-Qualität zu beeinträchtigen. Aus Sicherheitsgründen und zur späteren Datenanalyse werden die Atemflusskurven der Patienten kontinuierlich angezeigt und aufgezeichnet. Ein Kolbenkompressor ist integriert, um die gesamte gespeicherte He-3-Menge nutzen zu können. Weiterhin ist es möglich, die Polarisation vor Ort zu bestimmen und das abgeatmete He-3 zur späteren Rückgewinnung aufzufangen. Diese Auffangeffizienz konnte durch Untersuchungen mit He-4 (als He-3-Ersatz) gesteigert werden.rnDie ersten MR-Aufnahmen von 10 gesunden Probanden wurden mit diesem Aufbau imrnRahmen einer klinischen Studie durchgeführt. Die Analyse der bestimmten MR-Parameter Signal-Rausch-Verhältnis (SNR), Sauerstoffpartialdruck (pO2), Scheinbarer Diffusionskoeffizient (ADC=apparent diffusion coefficient) sowie die Signalanstiegszeit (rise-time) zeigt eine deutlich bessere Reproduzierbarkeit bei der Verabreichung des He-3 mit dem Applikators anstelle eines Tedlarbags (= kleine heliumdichte Plastiktüte).
Resumo:
Biosensors find wide application in clinical diagnostics, bioprocess control and environmental monitoring. They should not only show high specificity and reproducibility but also a high sensitivity and stability of the signal. Therefore, I introduce a novel sensor technology based on plasmonic nanoparticles which overcomes both of these limitations. Plasmonic nanoparticles exhibit strong absorption and scattering in the visible and near-infrared spectral range. The plasmon resonance, the collective coherent oscillation mode of the conduction band electrons against the positively charged ionic lattice, is sensitive to the local environment of the particle. I monitor these changes in the resonance wavelength by a new dark-field spectroscopy technique. Due to a strong light source and a highly sensitive detector a temporal resolution in the microsecond regime is possible in combination with a high spectral stability. This opens a window to investigate dynamics on the molecular level and to gain knowledge about fundamental biological processes.rnFirst, I investigate adsorption at the non-equilibrium as well as at the equilibrium state. I show the temporal evolution of single adsorption events of fibrinogen on the surface of the sensor on a millisecond timescale. Fibrinogen is a blood plasma protein with a unique shape that plays a central role in blood coagulation and is always involved in cell-biomaterial interactions. Further, I monitor equilibrium coverage fluctuations of sodium dodecyl sulfate and demonstrate a new approach to quantify the characteristic rate constants which is independent of mass transfer interference and long term drifts of the measured signal. This method has been investigated theoretically by Monte-Carlo simulations but so far there has been no sensor technology with a sufficient signal-to-noise ratio.rnSecond, I apply plasmonic nanoparticles as sensors for the determination of diffusion coefficients. Thereby, the sensing volume of a single, immobilized nanorod is used as detection volume. When a diffusing particle enters the detection volume a shift in the resonance wavelength is introduced. As no labeling of the analyte is necessary the hydrodynamic radius and thus the diffusion properties are not altered and can be studied in their natural form. In comparison to the conventional Fluorescence Correlation Spectroscopy technique a volume reduction by a factor of 5000-10000 is reached.
Resumo:
The study was arranged to manifest its objectives through preceding it with an intro-duction. Particular attention was paid in the second part to detect the physical settings of the study area, together with an attempt to show the climatic characteristics in Libya. In the third part, observed temporal and spatial climate change in Libya was investigated through the trends of temperature, precipitation, relative humidity and cloud amount over the peri-ods (1946-2000), (1946-1975), and (1976-2000), comparing the results with the global scales. The forth part detected the natural and human causes of climate change concentrat-ing on the greenhouse effect. The potential impacts of climate change on Libya were ex-amined in the fifth chapter. As a case study, desertification of Jifara Plain was studied in the sixth part. In the seventh chapter, projections and mitigations of climate change and desertification were discussed. Ultimately, the main results and recommendations of the study were summarized. In order to carry through the objectives outlined above, the following methods and approaches were used: a simple linear regression analysis was computed to detect the trends of climatic parameters over time; a trend test based on a trend-to-noise-ratio was applied for detecting linear or non-linear trends; the non-parametric Mann-Kendall test for trend was used to reveal the behavior of the trends and their significance; PCA was applied to construct the all-Libya climatic parameters trends; aridity index after Walter-Lieth was shown for computing humid respectively arid months in Libya; correlation coefficient, (after Pearson) for detecting the teleconnection between sun spot numbers, NAOI, SOI, GHGs, and global warming, climate changes in Libya; aridity index, after De Martonne, to elaborate the trends of aridity in Jifara Plain; Geographical Information System and Re-mote Sensing techniques were applied to clarify the illustrations and to monitor desertifi-cation of Jifara Plain using the available satellite images MSS, TM, ETM+ and Shuttle Radar Topography Mission (SRTM). The results are explained by 88 tables, 96 figures and 10 photos. Temporal and spatial temperature changes in Libya indicated remarkably different an-nual and seasonal trends over the long observation period 1946-2000 and the short obser-vation periods 1946-1975 and 1976-2000. Trends of mean annual temperature were posi-tive at all study stations except at one from 1946-2000, negative trends prevailed at most stations from 1946-1975, while strongly positive trends were computed at all study stations from 1976-2000 corresponding with the global warming trend. Positive trends of mean minimum temperatures were observed at all reference stations from 1946-2000 and 1976-2000, while negative trends prevailed at most stations over the period 1946-1975. For mean maximum temperature, positive trends were shown from 1946-2000 and from 1976-2000 at most stations, while most trends were negative from 1946-1975. Minimum tem-peratures increased at nearly more than twice the rate of maximum temperatures at most stations. In respect of seasonal temperature, warming mostly occurred in summer and au-tumn in contrast to the global observations identifying warming mostly in winter and spring in both study periods. Precipitation across Libya is characterized by scanty and sporadically totals, as well as high intensities and very high spatial and temporal variabilities. From 1946-2000, large inter-annual and intra-annual variabilities were observed. Positive trends of annual precipi-tation totals have been observed from 1946-2000, negative trends from 1976-2000 at most stations. Variabilities of seasonal precipitation over Libya are more strikingly experienced from 1976-2000 than from 1951-1975 indicating a growing magnitude of climate change in more recent times. Negative trends of mean annual relative humidity were computed at eight stations, while positive trends prevailed at seven stations from 1946-2000. For the short observation period 1976-2000, positive trends were computed at most stations. Annual cloud amount totals decreased at most study stations in Libya over both long and short periods. Re-markably large spatial variations of climate changes were observed from north to south over Libya. Causes of climate change were discussed showing high correlation between tempera-ture increasing over Libya and CO2 emissions; weakly positive correlation between pre-cipitation and North Atlantic Oscillation index; negative correlation between temperature and sunspot numbers; negative correlation between precipitation over Libya and Southern Oscillation Index. The years 1992 and 1993 were shown as the coldest in the 1990s result-ing from the eruption of Mount Pinatubo, 1991. Libya is affected by climate change in many ways, in particular, crop production and food security, water resources, human health, population settlement and biodiversity. But the effects of climate change depend on its magnitude and the rate with which it occurs. Jifara Plain, located in northwestern Libya, has been seriously exposed to desertifica-tion as a result of climate change, landforms, overgrazing, over-cultivation and population growth. Soils have been degraded, vegetation cover disappeared and the groundwater wells were getting dry in many parts. The effect of desertification on Jifara Plain appears through reducing soil fertility and crop productivity, leading to long-term declines in agri-cultural yields, livestock yields, plant standing biomass, and plant biodiversity. Desertifi-cation has also significant implications on livestock industry and the national economy. Desertification accelerates migration from rural and nomadic areas to urban areas as the land cannot support the original inhabitants. In the absence of major shifts in policy, economic growth, energy prices, and con-sumer trends, climate change in Libya and desertification of Jifara Plain are expected to continue in the future. Libya cooperated with United Nations and other international organizations. It has signed and ratified a number of international and regional agreements which effectively established a policy framework for actions to mitigate climate change and combat deserti-fication. Libya has implemented several laws and legislative acts, with a number of ancil-lary and supplementary rules to regulate. Despite the current efforts and ongoing projects being undertaken in Libya in the field of climate change and desertification, urgent actions and projects are needed to mitigate climate change and combat desertification in the near future.
Resumo:
To compare ECG-gated and non-gated CT angiography of the aorta at the same radiation dose, with regard to motion artifacts (MA), diagnostic confidence (DC) and signal-to-noise-ratios (SNRs).
Resumo:
Two commercially available electrode catheters are examined for their suitability in esophageal long-term ECG recordings. Both, electrical sensing characteristics as well as clinical acceptance were investigated in a clinical study including inpatients with cardiovascular diseases. In total, 31 esophageal ECG were obtained in 36 patients. Results showed that esophageal electrodes were well tolerated by the patients. Hemispherical electrodes with higher diameter required more insertion attempts and were associated with increased failure rates as compared to cylindrical electrodes. In contrast, the higher surface area of hemispherical electrodes resulted in significantly higher signal-to-noise ratio. Contact impedance was equal for both electrode types, but esophageal electrodes had lower impedance if compared with skin electrodes.
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.